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Abstract

This article reviews recent economic studies on the causal effects of temper-
ature on labor productivity. The negative effects of extreme temperatures
are widespread, and the magnitudes of the impact differ across social and
economic factors. In addition to physical outputs, extreme temperatures
also impair mental productivity, including cognition and learning. In utero
exposure to extreme temperatures has profound effects on human develop-
ment. Although the literature has detected various adaptation strategies, the
conclusions are mixed. We discuss some limitations of existing studies and
propose several directions for future research.
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1. INTRODUCTION

Climate change represents one of the most significant challenges of the twenty-first century. Un-
derstanding its economic impacts is essential for formulating climate policies and developing
adaptation strategies. Existing literature has examined the impact of climate change on various
outcomes, including agriculture, human health, total factor productivity, capital accumulation,
and institutional quality (Fankhauser & Tol 2005, Dell et al. 2012, Deschenes 2014, Letta & Tol
2019). This literature also highlights the effect of temperature on labor productivity as a crucial
element in the mechanisms or consequences explored in the aforementioned studies. As extreme
weather events become more intensified, frequent, and widespread under climate change, losses
in productivity are expected to worsen in the future.

This article systematically reviews recent economic studies on the impacts of temperature on
labor productivity. This body of literature deserves attention for three reasons. First, although the
literature has found negative impacts of extreme temperatures on both worker- and plant-level
output and per capita output at the regional level using micro- or macro-level data sets, findings
on the existence and effectiveness of adaptation are mixed in studies using macro-level data. In ad-
dition, most micro-level studies revealing that adaptation can alleviate temperature damage have
emphasized external adaptation strategies, including capital and institutional investments. How-
ever, recent studies have also highlighted physiological adaptation, which refers to adapting to
heat through training one’s own mind and body instead of by means of external devices. Because
external adaptation strategies may not be feasible in all circumstances, understanding the effec-
tiveness of physiological adaptation in reducing the adverse impacts of extreme temperatures can
help to expand the toolkit of adaptation strategies.

Second,many studies examine the average effects of temperature on labor productivity, but less
attention has been given to the potential distributional impacts. The distributional effects origi-
nate from the nonlinear damage function with regard to different levels of temperature exposure
and from various initial socioeconomic attributes at the same level of exposure.Designing efficient
environmental policies requires understanding the source of this heterogeneity because these two
different drivers for the same observed heterogeneous effects lead to different policy implications
(Hsiang et al. 2019). Regarding different causes of the distributional effects, policies should ac-
cordingly focus on reducing exposure to heat or concentrate on strengthening socioeconomic
factors such as income and education.

Third, although most studies focus on the contemporaneous effects of temperature on labor
productivity, extreme temperatures may also have long-term impacts. One example is in utero ex-
posure to extreme temperatures, which can stress mothers and infants, leading to malnutrition and
future income losses. Ignoring the long-term effects can underestimate the total costs of climate
change. Additionally, it is worth noting that mental productivity, which may also have long-term
consequences, is receiving limited but growing attention.Mental productivity includes cognition,
learning, and consequential decisions. Empirical evidence shows that outdoor temperature dam-
ages the cognitive performance of children and young students, suggesting that society may suffer
substantial welfare losses from temperature and climate change.

2. SCIENTIFIC BACKGROUND

In this section, we briefly discuss the scientific evidence of the impact of extreme temperature
on productivity. Extreme temperatures trigger thermoregulatory responses and can affect pro-
ductivity through body and brain functioning. Although both high and low temperatures impact
productivity, they have slightly different physiological mechanisms.
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High temperatures increase blood flow from the body to the skin by raising the heart rate
(Deschenes &Moretti 2009).When heat stress as measured by the wet-bulb temperature (WBT)1

continuously exceeds 35°C, the human body’s ability to dissipate metabolic heat disappears, in-
dicating that autogenous adaptation to temperature has an upper bound (Sherwood & Huber
2010).2 Long-term exposure to extreme heat has also been found to cause cardiovascular pres-
sure and inflammation (Bouchama et al. 2017). Moreover, the combination of extreme heat and
high humidity can lead to asthma symptoms and worsen existing respiratory diseases (Ayres et al.
2009, D’Amato et al. 2014). Exposure to a cold environment causes circulatory and metabolic
changes and depresses the immune system (LaVoy et al. 2011). In addition, the performance of
tasks requiring finger strength, speed, and dexterity decreases as the temperature falls (Meese et al.
1984).

Fetuses and infants are particularly sensitive to extreme heat because their thermoregulatory
and sympathetic nervous systems are not fully developed. Early-life heat exposure can perma-
nently alter sympathoadrenal function by modifying sympathetic innervation of peripheral tissues
and sympathetic nerve responsiveness (Young 2002), which can have profound effects on human
development, including earnings, cognition, and well-being (Isen et al. 2017).

Ambient temperature can also affect brain function. Heat stress induces changes in brain
electrical activity and neural speed, damaging various cognitive processes, including attention,
memory, learning, and information processing (Hocking et al. 2001). Exposure to extreme cold
changes the concentration of central catecholamines, a neurotransmitter that brain regions rely
on for normal functioning, further deteriorating cognitive performance (Taylor et al. 2016). In
addition, uncomfortable temperatures can also affect task performance through psychological
channels, such as mood and well-being (Noelke et al. 2016).

3. CONCEPTUAL FRAMEWORK

In this section, we develop a concise theoretical model based on that of Deryugina & Hsiang
(2014) to depict the role of temperature in economic production. Although the model is in partial
equilibrium, it informatively provides insights into the key channels that are the focus of this
review.

An economy uses labor L and capital K to produce, with AL and AK denoting labor and capital
productivity, respectively. Variables AL and AK respond to contemporaneous or past temperature
T . In addition, the producer can spend an effort e ∈ [0, 1] to moderate the sensitivity of labor
productivity to temperature, such as by installing air conditioners. The cost of effort is c(e), which
is a convex function with ∂c/∂e > 0 and ∂2c/∂e2 > 0. Following the Cobb-Douglas production
function, the quantity of output is written as

q(T ) = (AK (T )K )α (AL(T , e)L)1−α , 1.

where α and (1 − α) are the output elasticities of capital and labor, respectively.Denote the output
price as p, the wage rate as w, and the rent rate of capital as r. The producer faces the standard
profit maximization problem:

maxK ,L,e p · (AK (T )K )α (AL(T , e)L)1−α − wL− rK − c(e). 2.

1The WBT is the temperature indicated by a moistened thermometer bulb exposed to air flow. At 100%
relative humidity, the WTB is equal to the air temperature.
2Autogenous adaptation can be broadly understood as physiological or biological adaptation. We use
physiological/autogenous/biological adaptation interchangeably in this review.
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In Equation 2, price variables (p, w, r) are endogenously determined by the economy in gen-
eral equilibrium, and the producer is a price taker. Because the price effects are not the core of
this review, they are set to decouple from temperature.

Given T and price variables, the producer chooses labor and capital inputs, as well as the effort
level to maximize the profit. Denote the optimal labor and capital under the exogenous temper-
ature T as L∗(T ) and K∗(T ). We are interested in the total marginal effect of temperature on
economic output q(T ) and the underlying channels, given in the following equation:

dlnq(T )
dT

= (1 − α)
1

AL(T , e∗ )
· dAL(T , e∗ )

dT
+ (1 − α)

1
L∗ · dL

∗(T )
dT

+ α
1

AK (T )
· dAK (T )

dT
+ α

1
K∗ · dK

∗(T )
dT

. 3.

The effect of temperature on output is decomposed into four parts, andwe focus on the first two
components related to labor. The literature finds an inverted U-shaped effect of temperature on
economic activities; i.e., after exceeding the threshold, increases in temperature damage economic
performance. To simplify our illustration, we restrict T to exceeding the vertex temperature T̄ in
this section. Then, rises in T represent the monotonic deterioration of ambient temperature.

The first term on the right side of Equation 3 reflects the effect of temperature on aggregate
labor productivity. If the temperature crosses the comfortable zone, the partial effect of labor
productivity is expected to be negative with (1 − α) 1

AL (T ,e∗ ) · dAL (T ,e∗ )
dT < 0.We review the literature

on aggregate labor productivity at both macro and micro levels from both physical and mental
perspectives in Sections 5.1 and 5.3.

The second term on the right side of Equation 3 presents the impact of temperature on la-
bor demand. When the economy reaches equilibrium, the labor market is cleared, and the labor
available in production is equal to the labor supply by workers. That means the impact of temper-
ature on labor supply is implicitly reflected by dL∗

dT . Because the literature discussing the effect
of temperature on firms’ labor demand is very limited, we review the empirical literature on
temperature-labor supply in Section 5.2 to provide insights into this channel.

The total derivative of labor productivity with respect to temperature in the first term of
Equation 3 is a combination of two terms:

dAL(T , e)
dT

= ∂AL(T , e)
∂T

+ ∂AL(T , e)
∂e

· ∂e
∂T

, 4.

where the first term ∂AL (T ,e)
∂T describes the direct effect of temperature on labor productivity, and

the second term ∂AL (T ,e)
∂e · ∂e

∂T represents the effect of mitigation or adaptation efforts. It is usually
difficult to identify these two effects separately, even with exogenous variation in temperature;
thus, empirical estimates of dAL (T ,e)

dT account for different levels of mitigation and adaptation de-
pending on the context.We provide a review of studies examining whether these efforts exist and
how they help to slow down the damage of extreme temperature in Section 5.4.

4. EMPIRICAL METHODOLOGY

In this section, we first briefly review the high-dimensional fixed effects (HDFE) model, a widely
used identification strategy in the climate impact literature. Second, we summarize the measure-
ments of labor productivity and temperature used in the literature to trigger more thinking about
the strengths and weaknesses of different measures, as well as to improve our understanding of
differences across studies.Third, we review how existing literature has investigated adaptation and
provide a starting point for subsequent research on the topic.
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4.1. Identification

The HDFE model has the advantage of identifying the causal effects of temperature and has
been widely used in literature. We focus on introducing the HDFE method here, and for other
empirical designs, such as cross-sectional approaches and the long-difference strategy, see Dell
et al. (2014) and Hsiang (2016). To estimate the impact of temperature on labor productivity of
worker i in location c on date t, the HDFE specification is proposed as follows:

Yict = β f (Tct ) + Wctλ + Xictθ + μi + δc + θ (t ) + ϕ(c, t ) + εict , 5.

where the explained variable Yict refers to labor productivity.
Tct represents the temperature exposure, and β measures the response of labor productivity

to temperature exposure. However, actual temperature exposure is usually unobserved by re-
searchers, given ex post adaptations, such as air conditioning. Instead, researchers use ambient
temperature as a proxy for temperature exposure. Therefore, what β measures is the response of
labor productivity to temperature exposure, accounting for potential adaptation behaviors.

f (Tct ) is a function of temperature. The most straightforward way is to let f (Tct ) = Tct ; then,
β describes the effects of average changes in the temperature on labor productivity (see Dell et al.
2012).However, because the temperature effect tends to be asymmetrical on the left and right sides
of its distribution, this simple setting may be misleading (Burke et al. 2015). One more flexible
specification is using temperature bins, a semiparametric method that allows temperature effects
to vary across bins. As this setting is widely used in the literature, we do not introduce details here
but provide three noteworthy points.

First, if Yict is measured at the annual level, a common practice is to calculate the number of
days that fall into each degree bin. Thus, β indicates the marginal effect on productivity if one
day’s temperature moves from the reference bin to a specific bin. Second, the interpretation of
temperature bins relies on the choice of the reference bin, which is usually chosen as the temper-
ature bin with the optimal outcome (Graff Zivin et al. 2018). Burke et al. (2015) demonstrate that
when the explained variable is the economic output, the optimal temperature point at the macro
level (such as countries) is lower than that at the micro level (such as factories). Third, other useful
approaches to describing the nonlinear effects of temperature, for example, an inverted U-shape,
include piecewise and spline functions (Newell et al. 2021).

Wct is a vector of weather variables, usually including precipitation, humidity, wind speed,
air pressure, and sunshine. Air quality should also be controlled, as it is highly correlated with
temperature and has a nontrivial impact on labor productivity, as found in the related litera-
ture (Aguilar-Gomez et al. 2022). Xict is a vector of worker-level time-varying variables, such as
gender, age, education, and others. Because the temperature variable is contemporaneously cor-
related with Wct and Xict , these control variables should be included in Equation 5. Otherwise,
endogeneity due to omitted variables biases the estimation of β. One caveat is that when we aim
to estimate the overall effects of temperature on labor productivity, as presented in Equation 4,
one should not include adaptation behaviors in Xict . For example, we are interested in the rela-
tionship between temperature and productivity. If the equation includes the air conditioner as a
control variable, the correlation between temperature and productivity is partially captured by
the air conditioner such that the estimates do not represent the overall effects of temperature on
productivity.

μi represents worker fixed effects, δc represents location fixed effects, and θ (t ) refers to flexible
time trends. After controlling for these fixed effects, residual shocks in temperature are plausibly
random. Some studies include location-by-time fixed effects ϕ(c, t ), which absorb location-specific
temperature norms and make the temperature residual more exogenous. However, this stricter
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control may remove too many identifying variations and cause attenuation bias (Fisher et al.
2012, Deryugina & Hsiang 2014). εict is the error term, commonly two-way clustered, following
Cameron et al. (2011), to simultaneously allow spatial and serial correlation.

4.2. Measurement

In this section, we provide details on how to measure the key variables, including labor
productivity, temperature and adaptation, in the literature.

4.2.1. Labor productivity measurement. Macro-level studies usually use value-added, GDP,
or income per capita as proxies for country-level labor productivity (Hsiang 2010, Deryugina &
Hsiang 2014, Burke et al. 2015). However, these measures are relatively coarse and difficult to
distinguish from other economic indicators. An ideal approach is to aggregate detailed micro-
level labor productivity data of various activities to the macro level using a reasonable weighting
method. Yet, it can be costly to collect broadly representative micro-level data, and it can be chal-
lenging to justify the weighting method.Nonetheless, micro-level productivity records with more
accurate measurements are increasingly used in developed and developing countries, including
worker-level productivity data (Cai et al. 2018, Stevens 2019, Somanathan et al. 2021), athlete
performance records in competitive sports (Qiu & Zhao 2022, Sexton et al. 2022), and cognitive
performance and decision making in mentally demanding tasks (Graff Zivin et al. 2018, Heyes &
Saberian 2019). A similar but coarse data source is firm-level production data from industrial firm
surveys (Zhang et al. 2018, Chen & Yang 2019, Somanathan et al. 2021).

4.2.2. Temperature measurement. We provide two key points in using the temperature vari-
able. First, measurement errors can arise during the construction process of the temperature
variable. To proxy the temperature experienced by study units, researchers often use a weight-
ing approach to average the values from nearby meteorological monitoring stations or grids (for
raster data). However, the resulting temperature may deviate from the actual temperature ex-
perienced by study units due to some error. If the error is random, the temperature estimate is
biased toward zero. In addition, industrial workers who mostly work indoors experience temper-
atures different from those outdoors. The direction of bias caused by the measurement error in
the outdoor-indoor temperature difference is uncertain and can vary across seasons. Thus, further
studies in various contexts are needed to fill this knowledge gap.

Second, the measure of temperature can vary across studies. Most studies use the daily average
temperature, which averages the maximum and minimum temperatures of a day (Graff Zivin et al.
2018, 2020; Zhang et al. 2018; Chen & Yang 2019; Stevens 2019; Garg et al. 2020a). A large body
of literature also uses daily maximum temperature, which better captures the actual temperature
faced by people because jobs are usually done in the daytime (Graff Zivin & Neidell 2014, Cho
2017, Cai et al. 2018, Park et al. 2020, Somanathan et al. 2021). Laboratory studies often examine
the effects of the WBT that nonlinearly account for the joint impacts of ambient temperature,
humidity, and wind speed (Lemke & Kjellstrom 2012). The heat index is another adjusted heat
measure, a nonlinear function of temperature and relative humidity (Qiu & Zhao 2022). While
the WBT and heat index measures better capture the heat experienced by individuals, humidity
and wind speed data are often unavailable, making studies using these measures difficult to com-
pare with other studies. Overall, the purpose of measuring temperature variables is to capture the
temperature stress under specific tasks and reduce measurement errors.One caveat is that temper-
ature effects estimated using different measurements are not directly comparable, which should
be taken into account when verifying external validity.
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4.3. Adaptation

The existing literature has mostly used two methods to examine the effectiveness of a certain
climate adaptation strategy. First, researchers (Isen et al. 2017, Chen & Yang 2019, Adhvaryu et al.
2020, Cook &Heyes 2020, Park et al. 2020, Qiu & Zhao 2022, Sexton et al. 2022) add interaction
terms between temperature variables and the possible moderating factor in baseline Equation 5,
which gives

Yict = γ f (Tct ) × Adaptct + β f (Tct ) + ρAdaptct + Wctλ + Xictθ + μi + δc + θ (t ) + ϕ(c, t ) + εict . 6.

Adaptct is an indicator of the existence of external adaptation strategies (e.g., air conditioners) or
a proxy for the experience of hot days in the past (e.g., a dummy for the high-temperature region,
the number of hot days, or the average temperature in the past) to examine the effect of autogenous
adaptation. The key coefficients are γ . Note that some studies have also tried to estimate the
heterogeneous effects of temperature by including the interactions between temperature variables
and individual demographic characteristics (e.g., gender, income). These results, although not
necessarily causal, suggest that some groups of people have better adaptation capabilities.

Second, some studies use subsample analyses (e.g., by gender, race, income, occupation en-
vironment, past climate, industry, and climate control) to test the effects of adaptation (Graff
Zivin & Neidell 2014, Cho 2017, Park et al. 2020, Somanathan et al. 2021). This method is sim-
ilar to the interaction method above, with more relaxed assumptions of the functional form of
Equation 5 across different subsamples.

In addition, studies have explored whether climate adaptation behavior exists using different
analysis methods depending on the data availability. One way is to regress the adaptation behavior
variable on temperature. For instance, researchers directly regress the time use indicators within
a day to examine intraday time substitution (Graff Zivin & Neidell 2014). In another example,
Park (2022) regresses a bunching estimator of the degree of grade manipulation on temperature
variables using a fixed effects model similar to Equation 5. In some situations, lagged temperature
terms are included. For example, to assess interday time substitution, researchers include lagged
and contemporaneous temperature variables and compare the aggregated effect on total time use
with effect from a parsimonious model with only contemporaneous temperature (Graff Zivin &
Neidell 2014, Garg et al. 2020a). That unpleasant lagged temperatures increase current time use
implies interday time substitution. That the total effects from lagged temperatures exceed the
contemporaneous temperature effect indicates complementary time use across time.

Finally, researchers have combined the panel data fixed effects model, long-difference model,
and cross-sectional model to test the existence of compensatory behavior as an implicit way of
adaptation (Graff Zivin et al. 2018). The panel data fixed effects model identifies the short-run
effects of temperature, which do not account for adaptation behaviors, whereas the long differ-
ence model and the cross-sectional model estimate the long-run effects of climate, which also
incorporate the accumulated impacts of weather extremes plus the impacts of ex post compen-
satory behaviors.Under the assumption that accumulated effects of temperature on the dependent
variable are well accounted for in the long-difference model, comparing the estimates from the
panel data fixed effects model and the long-difference model would inform the existence of
compensatory behavior or lack thereof.

5. EMPIRICAL REVIEW

In this section, we review the temperature effects on labor productivity. First, we summa-
rize the impacts of temperature on labor outputs. Second, we review the temperature effects
on mental productivity. Third, we investigate the studies of adaptation in moderating the
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temperature-productivity relationship. Next, we summarize the distributional effects of tempera-
ture and review the issue of in utero exposure. The previous sections focus on studies with causal
research designs, mainly the HDFE approach. Finally, we briefly discuss the findings from the
studies in a general equilibrium framework.

5.1. Labor Output

Wereview the effects of temperature on labor output at bothmacro- andmicro-levels.Macro-level
evidence refers to findings cross countries or regions, and micro-level studies focus on worker- or
plant-level outputs.

5.1.1. Macro-level evidence. We begin our discussion with the study by Hsiang (2010), which
examines the impact of surface temperature on the economic output of 28 Caribbean and Central
American countries using annual longitudinal data from 1970 to 2006. The study finds that a
1°C increase in surface temperature led to a 2.5% decrease in national output (measured by value
added per capita). Notably, the damage caused by higher temperatures to the nonagricultural
sector (−2.5% per 1°C) was 20 times greater than that to the agricultural sector (−0.1% per 1°C),
indicating that labor productivity losses in labor-intensive nonfarming sectors could be a crucial
mechanism behind the result.

Dell et al. (2012) investigate the impact of temperature on aggregate economic outcomes using
historical panel data for 125 countries from 1950 to 2005.The study finds that higher temperatures
reduce economic growth, but the effect is only significant for poor countries. The negative impact
of higher temperatures on economic growth includes both a level effect (reduction in current
output level) and a growth effect (negatively affecting innovations, institutions, and other factors
that are vital for future economic growth). Moreover, the effects of temperature on agricultural
and industrial output are of comparable magnitude. Specifically, a 1°C increase in temperature
in poor countries leads to a 2.66% lower growth in agricultural output and a 2.04% decrease
in industrial output. In contrast, Deryugina & Hsiang (2014) find that high temperatures also
decrease economic output in wealthy places based on panel data of US counties from 1969 to
2011. The income response to temperature is a combination of agricultural and nonagricultural
effects. The relationship between temperature and nonagricultural income is consistent with the
temperature-labor supply pattern in high-risk heat-exposed industries, as shown by Graff Zivin
& Neidell (2014), which suggests that the effect of temperature on labor supply is an important
underlying mechanism.

Burke et al. (2015) revisit the relationship between temperature and economic production using
panel data of 166 countries from 1960 to 2010. They find a smooth inverted U-shaped response
of the annual economic growth rate to the annual average temperature, with a peak at 13°C. Both
rich and poor countries respond to temperature nonlinearly, which also applies to agricultural and
nonagricultural sectors.

Overall, the abovementioned studies offer two conclusions. First, the adverse effects of heat
on economic growth are widespread, affecting both poor and rich countries. Extreme tempera-
tures harm the nonagricultural sector, and the effect can sometimes be greater than that on the
agricultural sector because it is more labor intensive. Second, the literature suggests that the de-
crease in labor productivity may be a potential underlying channel; i.e., the damage first appears
as decreased labor productivity in individual workers and then aggregates to the lower outputs at
the macro level. However, we still lack a comprehensive understanding of how temperature af-
fects labor productivity across different sectors and countries, as well as the extent to which labor
productivity loss explains the effect of temperature on macro-level output.
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5.1.2. Micro-level evidence. A strand of studies usesmicro-level productivity data,mostly from
labor-intensive manufacturing industries, which probably endure more direct effects of extreme
temperatures. The literature either focuses on the effects of discrete changes in various tempera-
ture measures or the marginal effects of a 1°C temperature increase, which makes the comparison
of the estimates less direct. Qiu & Zhao (2022) find that the average labor productivity effects of
heat are on the same order of magnitude across studies that use different micro productivity data
or study regions, while the heat impact on total factor productivity (TFP) is of a lower order of
magnitude compared with that on labor productivity.

Specifically, Cai et al. (2018) use worker-level production records from a paper cup production
factory in Xiamen, China, from 2012 to 2014. They find a nearly symmetric inverted-U-shaped
relationship between daily maximum temperature and labor productivity (measured by the per-
centage of overtarget production). Extreme cold (heat) with a daily maximum temperature below
60°F (over 95°F) causes an 11% (8.5%) reduction in productivity compared to the reference bin
(75–80°F).

Studies on the impact of temperature on labor productivity in the agricultural sector are rela-
tively sparse. Stevens (2019) uses production data of Californian blueberry pickers from 2014 to
2016 to explore the impact of temperatures on workers’ productivity. High-frequency tempera-
ture readings near each farm are obtained and combined with the picking period of workers to
construct time-weighted temperature measurements, which capture the heat exposure workers
face more accurately. Stevens finds an inverted U-shaped relationship between temperature and
worker productivity, with both extreme cold and heat having significant negative impacts. Com-
pared to the reference bin of 80–85°F, temperatures below 55°F (over 100°F) lower productivity
by 17% (12%).

Zhang et al. (2018) use the annual survey of above-scale industrial firms in China from 1998
to 2007 and find that replacing a day with the mean temperature in the reference bin (50–60°F)
with a day over 90°F decreases TFP by 0.56% and output (measured by value added) by 0.45%.
The relationship between temperature and output is nearly identical to that of TFP, implying that
the effects on TFP instead of labor or capital inputs drive the output response to temperature.
However, because TFP is a weighted combination of labor and capital productivity, the role of
labor productivity in the temperature effects on firm output is not disentangled separately. Using
the same data set, Chen & Yang (2019) estimate the effects of seasonal average temperatures on
firm-level labor productivity (value added per worker) and find that a 1°C increase during summer
decreases labor productivity by 3.4–4.5%. They also find that firms’ investment decreases and
inventory levels increase in response to temperature increases. Using automobile assembly data,
Cachon et al. (2012) find that six or more days of exposure to over 32.2°C within a week decrease
labor productivity by 8%.

Going a step further, Somanathan et al. (2021) combine worker-level productivity, firm-level
output, and the subnational industrial GDP of India to explore how the temperature effects on
worker productivity can link to the effects on firm-level production and macro-level national out-
put. Using high-frequency worker-level production data in the cloth weaving, garment sewing,
and steel production industries, Somanathan et al. (2021) find that high temperatures decrease
worker outputs. In a representative context, the output of garment workers decreases by 3% if the
temperature every day in a year increases by 1°C. Based on India’s Annual Survey of Industries
from 1998 to 2012, they find that the annual plant output decreases linearly with higher temper-
atures once the daily maximum temperature is over 20°C, and a uniform 1°C rise in temperature
per day across a year causes a 2.1% reduction in annual plant output.

Under the specification of the Cobb-Douglas production function, Somanathan et al. (2021)
confirm that the damage of high temperatures to labor productivity explains the vast majority of
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the loss of plant output. Based on panel data of manufacturing-sector GDP for 438 districts from
1998 to 2009, they also find that a 1°C increase in average annual maximum temperature is associ-
ated with a 3.5% decrease in annual district industrial output. The magnitude of the temperature
effect on worker productivity and firm output is close to that of subnational industrial output and
comparable to previous studies using cross-country data, highlighting labor productivity as an
essential mechanism of the temperature effect on macro-level economic output.

Representativeness of the data set and external validity of the findings are critical challenges for
micro-level studies.Oneway to verify the external validity is to compare the temperature effect in a
specific context to the results in other contexts or studies in other disciplines. For instance, studies
verify that their estimated productivity effects of temperature are consistent with the temperature-
human performance relationship in the ergonomics and physiology literature (Hsiang 2010, Qiu
& Zhao 2022). Another solution is to involve data sets of study units at multiple levels to connect
the temperature effect on micro-level labor productivity with that on aggregate economic output
(Somanathan et al. 2021).

5.2. Labor Supply

Temperatures not only impact labor productivity in terms of reduced work intensity and quality
of labor input, but they can also affect labor extensively by increasing work absenteeism or reduc-
ing the time allocated to work. Graff Zivin & Neidell (2014) find that workers in high-exposure
industries reduce their daily time allocated to labor by one hour when daily maximum tempera-
tures exceed 85°F compared to the reference temperature level at 76–80°F. The decrease in time
allocated to labor is concentrated at the end of the day, indicating that fatigue from prolonged
exposure to high temperatures is a potential channel. Garg et al. (2020a) examine the relationship
between temperature and work time in China using individual-level panel data from the China
Health and Nutrition Survey from 1989 to 2011. They find that both extreme heat and extreme
cold reduce work time. An additional day with an average temperature above 80°F or below 25°F,
compared with the temperature level at 55–60°F, lowers weekly work time by 1.2 h or 1.8 h,
respectively.

Some studies adopt administrative record data of worker attendance to explore this issue. Cai
et al. (2018) find that neither the attendance decision nor working hours of workers in a manu-
facturing factory in China are affected by temperature. One explanation is that work attendance
and hours are highly related to pay, and the rigidity of the labor market causes labor supply to
respond less to ambient temperature. In the context of the Indian industrial factory, Somanathan
et al. (2021) find that experiencing high temperatures in the current or preceding week increases
workers’ absenteeism, and the effect is stronger for paid leave workers. This finding suggests that
labor supply is more sensitive to temperature when workers have more flexibility. At a higher level,
Zhang et al. (2018) find that the labor inputs of industrial firms in China almost do not respond to
temperatures, except when the temperature is extremely high. These results imply that the effect
of temperature on labor supply is not as intuitive as imagined but depends on complex factors such
as the extent of occupational exposure and labor market conditions.

5.3. Mental Productivity

In some cases, labor productivity is reflected in terms ofmental output ormental productivity, such
as cognition, learning, and decision making. A growing body of empirical studies demonstrates a
causal link between temperature and various outcomes related to mental productivity. Existing
studies have examined the impacts of extreme temperatures on cognitive ability test scores in
surveys (low stakes) or student exam scores (high stakes) in countries including the United States,
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China, India, andCanada. Studies are consistent in themagnitudes of the contemporaneous effects
of temperatures but differ in the magnitudes of the cumulative temperature effects.

Focusing on a low-stakes test administered in US homes as part of the National Longitudinal
Survey of Youth,Graff Zivin et al. (2018) find that children’s math (but not reading) performance is
sensitive to temperature on the test day. In particular, each degree day above 21°C lowers the math
score by 0.219%.The contemporaneous impact of temperature on cognitive performance remains
in relatively high-stakes tests in school settings. Graff Zivin et al. (2020) estimate the temperature
impact on high school students’ performance in the National College Entrance Examination in
China,where individual-level adaptation is very limited given the unavailability of air conditioning
and the rigidity of the exam location and time.They find that a 1°C increase in temperature during
the two exam days decreases the total test score by 0.34%.Park (2022) investigates the relationship
between exam-time temperature and student performance in high school exit exams in New York
City and finds that a 1°F increase in exam-time temperature reduces performance by 0.9% of a
standard deviation.

In addition to the negative impact of high temperatures, Cook&Heyes (2020) provide the first
evidence of the detrimental impact of cold outdoor temperatures on cognitive performance in the
short run. Leveraging data on exam performance of adult students at the University of Ottawa,
they find that a 10°C colder outdoor temperature on exam day reduces performance by 8.09% of a
standard deviation. Because the indoor temperature in exam rooms is held almost exactly constant,
this result suggests that even with perfect technological protection at the organizational level, the
detrimental impact of extreme cold is still substantial.

Some studies evaluate the impact of sustained exposure to temperature on cognitive perfor-
mance and human capital accumulation, but the results are mixed. Graff Zivin et al. (2018) find
limited effects of climate, measured as temperature exposure between successive tests or from
birth until the date of the test, on human capital accumulation. They argue that the difference
between the short-run and long-run results may be driven by ex post compensatory behaviors,
such as the extra time investment of teachers or parents. Similarly, Cook & Heyes (2020) find
that cooler temperature during the semester is associated with improved performance, although
the contemporaneous impact of the exam day cold temperature is significantly negative. They
attribute this to the cold-driven substitution from outdoor leisure to indoor work.

However, leveraging data on the standardized exam PSAT scores of American high school
students, Park et al. (2020) demonstrate that cumulative heat exposure reduces the rate of learning
in the long run. As the average maximum temperature experienced during school days the year
before the test increases by 1°F, students’ academic achievement decreases by 0.2% of a standard
deviation, mainly because of the disruption of instructional time. Focusing on tests administered
in Indian primary and secondary schools,Garg et al. (2020b) find that relative to 1–17°C, one extra
day in the previous year with an average daily temperature above 29°C reduces math and reading
test scores by 0.3% and 0.2% of a standard deviation, respectively. They provide evidence that the
underlying mechanism in this developing country context is reduced agricultural productivity and
income driven by growing season heat. Social protection programs designed to offset fluctuations
in agricultural income could greatly mitigate the impact.

Graff Zivin et al. (2020) also find a significantly negative effect of extreme heat in the previous
year on students’ performance in the context of the college entrance exam in China. Cho (2017)
studies the medium-term effect of summer heat on the score of the Korean college entrance exam
taken in November. The results suggest that relative to 28–30°C, an additional day during the
summer with a maximum temperature above 34°C could decrease math and English test scores
by 0.42% and 0.64%of a standard deviation, respectively, but has nomeaningful impact on reading
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scores. Over a longer period, summer heat in the previous year also negatively affects the current
year’s academic performance.

The difference in the cumulative effects of temperature may be attributed to the availability of
mitigation and adaptation strategies, e.g., penetration of cooling and heating equipment, which
varies significantly across study regions. Besides, temperature-related shocks to cognitive perfor-
mance and human capital accumulation could generate persistent consequences for educational
attainment in the future (Graff Zivin et al. 2020, Park, 2022). However, it is unclear to what ex-
tent these effects on children and young adults in school or nonschool settings can be generalized
to labor productivity in the workplace. The empirical evidence linking temperature to the work-
place cognitive output of mentally demanding tasks is quite scant. A notable exception is Heyes &
Saberian (2019), who analyze the short-run impact of outdoor temperature on immigration ad-
judications made by US professional immigration judges. Even with high-quality climate-control
technology available, temperatures can still damage decision consistency and quality. In particu-
lar, a 10°F increase in working time temperature on the decision day reduces the probability of a
decision favorable to the applicant by 1.075%, equivalent to a 6.55% decrease in the grant rate.

5.4. Mitigation and Adaptation

The extant literature on climate adaptation can be divided into studies that estimate the effec-
tiveness of adaptation strategies and studies that examine whether adaptation behavior exists. On
the one hand, the first strand of literature often focuses on the effectiveness of external adaptation
strategies. Among the external strategies, some are directly related to protection against extreme
weather, while others are not. The former category includes the adoption of climate control de-
vices such as air conditioners (Isen et al. 2017, Park et al. 2020, Somanathan et al. 2021), students
taking exams in a new building that is better insulated than older ones, spending more on better
winter clothing, and taking taxis on cold days (Cook & Heyes 2020). Examples in the latter cat-
egory include adopting energy-saving technology (Adhvaryu et al. 2020) and providing a safety
net for the poor (Garg et al. 2020b). The literature has also examined the existence and/or effec-
tiveness of physiological/biological/autogenous adaptation strategies (Cook & Heyes 2020, Qiu
& Zhao 2022, Sexton et al. 2022). On the other hand, examples of the examination of adaptation
behavior include compensatory behavior to counteract the adverse impacts of extreme tempera-
tures on oneself or others and time reallocation of oneself and within the family (Graff Zivin &
Neidell 2014, Garg et al. 2020a).

Regarding specific examples of the effectiveness of external adaptation measures, Isen et al.
(2017) find that household air conditioning adoption mitigates nearly all of the estimated impacts
of early-life exposure to high temperatures on adult earnings for US individuals born between
1969 and 1977. Park et al. (2020) find that school air conditioning decreases the negative impact
of hotter school days in the years before the test was taken on standardized PSAT test scores
of US high school students. Somanathan et al. (2021) find that climate control in the workplace
eliminates productivity declines due to high temperatures but not absenteeism in India. Cook &
Heyes (2020) find that taking exams in a new building, spending more on better winter clothing,
and taking taxis on cold days could offset some of the adverse impact of cold outdoor temperatures
on student test scores in Canada.

In addition, Adhvaryu et al. (2020) find that the replacement of compact fluorescent lamps with
light-emitting diode lighting in garment factories attenuates the negative relationship between
mean daily outdoor temperature and worker efficiency in India. Garg et al. (2020b) find that the
rollout of the world’s largest workfare program, the National Rural Employment Guarantee Act,
substantially weakens the link between temperature and test scores by providing a safety net for
the poor in India.
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Although capital and institutional investments such as air conditioning and new technologies
have been emphasized in the literature, such investments are still infeasible in many developing
countries (Kahn 2016, Qiu & Zhao 2022). As a comparison, autogenous adaptation strategies can
complement the adaptation tool kit. The psychology literature has widespread evidence about
habituation, i.e., reduced sensitivity of human sensors to heat after repeated exposure (Swim et al.
2009). One kind of autogenous adaptation is acclimatization, which is defined as “the beneficial
physiological adaptations that occur during repeated exposure to a hot environment” and can
occur within one week and persist amid heat exposure (CDC 2018). Acclimatization can reduce
body temperature, improve skin blood flow and thermal tolerance, increase sweat rate, and yield
other physiologic responses that improve thermal comfort in hot environments and mitigate the
adverse performance impacts of heat (Graff Zivin &Neidell 2014, Périard et al. 2015, Sexton et al.
2022).

Based on archers’ performance records in China, Qiu & Zhao (2022) find evidence of autoge-
nous adaptation that the performance of athletes trained in high-temperature regions is much less
affected by extreme heat than that of athletes trained in low-temperature regions and that gaining
experience and autogenous adaptation together canmitigate 70% of the heat impacts. Sexton et al.
(2022) project that acclimatization reduces performance losses from alternative climate change
scenarios by more than 50% relative to projections that ignore acclimatization based on the US
collegiate track and field performance records.Cook&Heyes (2020) find the biological adaptation
of foreign students makes their performance substantially less sensitive to temperature over time.

Other studies have also confirmed the existence of autogenous adaptation. By separately esti-
mating the impact of temperatures in June andAugust,Graff Zivin&Neidell (2014) find that labor
for high-risk workers is less sensitive to temperatures over 100°F in August, which suggests short-
run acclimatization to heat that is more common in August. They also estimate heterogeneous
time-use responses to temperature across counties with the highest and lowest third of historical
July–August temperatures but fail to find significant differences. Researchers also examine auto-
genous adaptation in the context of individual firms’ data by estimating the heterogeneous effects
of temperature across hot and cold regions. Chen & Yang (2019) find that higher summer tem-
peratures have larger detrimental effects on industrial output in low-temperature regions than
in high-temperature regions, suggesting the existence of adaptation of manufacturing firms to
warming in high-temperature regions in China.

Some studies directly examine the existence of adaptation behavior. Compensatory behavior
is an ex post adaptive strategy that requires no knowledge of the pernicious effects of extreme
temperatures beforehand. Graff Zivin et al. (2018) find that short-run temperature beyond 26°C
significantly decreases cognitive performance in math in the panel data fixed effects model, but
long-difference and cross-sectional models reveal a significantly much smaller relationship be-
tween high temperature and human capital than in the short run, which suggests the existence
of compensatory behavior. Another example is Park (2022), who finds compensatory grading
manipulation by teachers. A higher exam-time temperature harms high school students’ exam per-
formance, and benevolently motivated teachers attempt to manipulate grades upward for exams
taken under hot conditions.

Regarding the examination of reallocation of work and leisure hours in response to temperature
as a direct way of adaptation, Graff Zivin & Neidell (2014) find a significant intraday substitution
of hours worked, a small role for interday substitution in the workplace, and rescheduled outdoor
leisure for the nonemployed across days in response to high temperatures. Garg et al. (2020a)
include lagged temperature bins for up to three weeks and find that the negative impact of tem-
perature doubles, suggesting that work time in subsequent weeks complements work time in the
week experiencing a temperature shock. The authors also explore time substitution across family
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members by estimating the impact of temperature on the ratio of the husband’s work time to the
wife’s work time but with insignificant results.

To summarize, most studies mentioned above rely on micro-individual-level or firm-level data
sets and find that adaptation ameliorates damages of extreme temperatures.A relevant strand of lit-
erature examines the relationship between climate change and economic output usingmacro-level
(e.g., country-, state-, or county-level) data sets. Deryugina & Hsiang (2014) estimate the impacts
of temperature on income in different decades from 1970 to 2010 in the United States, finding
that the negative effects of extreme heat are stable across subsamples. This result suggests limited
adaptation in mitigating adverse temperature effects. Dell et al. (2012) use the long-difference
approach to examine the effect of temperature changes on the economic growth of 125 coun-
tries in two periods: 1970–1985 and 1986–2000. The medium-term result indicates that a 1°C
rise in temperature in poor countries is related to a 1.9% reduction in the annual growth rate,
which is close to the short-run panel estimates, and implies that poor countries fail to eliminate
the negative impacts of temperature increases by adaptation.Using panel data from 166 countries,
Burke et al. (2015) find that the dose-response patterns between temperature and national output
in 1960–1989 and 1990–2010 are nearly identical, indicating very limited adaptation in the past
50 years.The findings of limited adaptation extents contrast the findings from themicro-level data
sets, which implies that more research is needed to reconcile the gap between these two strands
of literature.

5.5. In Utero Exposure to Extreme Temperatures

The fetal origins hypothesis suggests that circumstances during fetal development can have sig-
nificant and long-lasting effects on human development (Almond & Currie 2011, Fishman et al.
2019). Exposure to extreme temperatures in utero may stress both mothers and infants through
biological mechanisms discussed in Section 2, such as poor regulation of body temperature in in-
fants. Additionally, such exposure may affect infants’ development through impacts on household
income and nutrition.

Researchers have investigated the effects of temperature in utero and early childhood on adult
earnings and cognitive abilities. Isen et al. (2017) analyze administrative earnings records for over
12 million individuals born in the United States and find that temperatures above 32°C in utero
are associated with a 0.1% reduction in adult annual earnings at age 30. Fishman et al. (2019)
examine the same question using data from one million formal sector workers above the age of
30 born between 1950 and 1979 in Ecuador and find that a 1°C increase in average monthly
temperature in utero leads to a 0.7% decrease in adult earnings and a 0.5% reduction in the
probability that females attain higher education. Hu & Li (2019) study the 2010 wave of the
China Family Panel Studies, a nationally representative, biannual longitudinal survey of Chinese
communities, families, and individuals. They find that exposure to an additional day of high tem-
perature during prenatal periods is associated with a 0.48% decrease in standardized word-test
scores, a 0.02-cm reduction in height, 0.02 fewer years of schooling, and a higher risk of illiteracy
by 0.18%. Additionally, Hu & Li (2019) validate an income channel by showing that the pro-
portion of heat-tolerant crops (C4 plants) significantly reduces the impacts of high temperatures
during pregnancy. These findings suggest that exposure to high temperatures in utero has adverse
effects on labor productivity across both developed and developing countries.

However, differences in socioeconomic characteristics and institutional background (e.g., the
levels of health care) across sample populations may contribute to different findings regarding
temperature impacts during different trimesters and early childhood. Isen et al. (2017) find that
temperature impacts are concentrated in the first and third trimesters, while Hu & Li (2019)
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find that they are concentrated in the first and second trimesters. Isen et al. (2017) also find that
temperatures above 32°C in the first year of life are associated with a 0.1% reduction in adult
annual earnings at age 30. In contrast, both Fishman et al. (2019) and Hu & Li (2019) find no
impact of temperature in the nine months after birth on adult earnings or cognitive abilities.
Further research is necessary to address these discrepancies.

Investigating the impacts of exposure to extreme temperatures in utero is important be-
cause early interventions in infants can have a significant impact on their future development.
Consequently, adapting strategies during pregnancy may lead to substantial welfare gains.

5.6. Distributional Effects

While many studies examine the overall effects of temperature on labor productivity, less attention
has been given to the potential distributional impacts. The marginal effects of temperature may
vary across social and economic factors, such as income, gender, and race. Understanding the
causes of these mixed findings is an important challenge for future research.

Studies on income differences indicate that lower-income individuals may suffer larger
marginal damages due to temperature. For example, Park et al. (2020) find that the impact of
prior year heat on student scores in lower-income US ZIP codes is twice as large as those from
higher-income ZIP codes, likely owing to differences in protective investments. Hsiang & Narita
(2012) find that higher spatial concentrations in the capital and rich countries lead to higher de-
fensive investment and lower marginal damages from cyclones. However, there are exceptions in
that low-income populations do not have lower vulnerability. Hsiang & Jina (2014) examine the
long-run effect of tropical cyclones on GDP growth and show that the relative income losses per
unit of exposure for rich and poor countries appear almost identical.

Regarding gender differences,Garg et al. (2020a) find that, among farm workers, the reduction
in labor supply in females is approximately twice as large as that in males. Specifically, the marginal
effect of an extra day above 80°F on the work time of female farmers is −1.94 hours per week.
Moreover, hot days reduce women’s time spent on home production. The gender difference in
productivity losses is also detected by Park et al. (2021). However, many studies find no gender
differences. Park et al. (2020) examine the effects of heat stress on student learning in the United
States and find no evidence of heterogeneity by student gender. Additionally, Qiu & Zhao (2022)
and Cai et al. (2018) also find no gender differences in professional archery performance and
manufacturing worker productivity, respectively.

Studying race differences, Park et al. (2020) find that the impact of prior year heat on learning
among Black and Hispanic students is three times as large as that for white students. Park (2022)
also finds that approximately 3–4% of average racial achievement gaps in student performance
could be attributable to temperature in the United States because more Black and Hispanic stu-
dents take SAT exams when the temperature is above 90°F. The literature also explores other
heterogeneities, including industries, occupations, and family backgrounds. For example, Graff
Zivin & Neidell (2014) find that at daily maximum temperatures above 85°F, workers in indus-
tries with high exposure to weather extremes reduce the daily time allocated to labor by as much
as one hour.

The disparate marginal effects can be decomposed into two sources (Hsiang et al. 2019). The
first is the nonlinear damage function owing to different levels of climate exposure. Nonlinearity
has been identified in several contexts, including labor supply (Graff Zivin & Neidell 2014) and
cognitive performance (Graff Zivin et al. 2018). The levels of exposure vary because people sort
to locations according to their preferences. Nordhaus (2006) finds that poor populations tend
to live in hotter and drier locations. In addition, Park et al. (2018) find a negative correlation
between wealth and warmer temperatures within hot countries but a positive correlation between
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wealth and warmer temperatures within cold countries. In contrast, Hsiang et al. (2019) show
that exposure to tropical cyclones is spread fairly evenly across global income categories. More
evidence on exposure heterogeneities is required as the projected distribution of future climate
change exposure is even more complex.

The second source of marginal damage is the vulnerability originating from various initial
socioeconomic attributes while at the same level of exposure. For example, poorer people tend
to exhibit larger marginal damage from temperature shocks. This line of research is particularly
difficult because it requires exogenous variations in the source of socioeconomic factors. Garg
et al. (2020b) show that high temperatures reduce test scores among school-age children, but
the rollout of a workfare program substantially weakens the link between temperature and test
scores. Hornbeck & Keskin (2014) show that irrigation techniques can initially reduce the impact
of drought on US farmers but that drought sensitivity increases over time as land use is adjusted
to water-intensive crops. Although these causal studies are limited, they are growing quickly in
number and contributing to our knowledge of the underlying causes of heterogeneity in marginal
damages (Fetzer 2014, Hsiang et al. 2013).

5.7. General Equilibrium

Many studies have highlighted the reduced-form impact of temperature on productivity.However,
a burgeoning literature has taken a dynamic general equilibrium framework to quantify climate
impacts. Such analyses are usually conducted at a global scale, which is rich in the margins of
adaptation. Conte et al. (2021) emphasize sectoral specialization and reallocation, finding that ris-
ing temperatures increase productivity growth in agriculture but decrease productivity growth in
nonagriculture. As a result, warmer temperatures push agriculture to regions such as Central Asia
that initially suffered from a large temperature penalty, benefitting these regions from relatively
high agricultural productivity. Nath (2022) finds limited gains from the global reallocation of
agriculture and highlights the interaction between subsistence needs and sectoral specializations
in poor countries.

This line of studies also features trade and migration as adaptation mechanisms. Cruz & Rossi-
Hansberg (2021) focus on mechanisms through which individuals can adapt to global warming,
including costly trade and migration, local technological innovations, and natality rates. Their re-
sults indicate welfare losses as high as 19% in parts of Africa and Latin America but also exhibit
high heterogeneity across locations, with northern regions in Siberia, Canada, and Alaska experi-
encing gains. Burzyński et al. (2022) account for the effects of changing temperatures, sea levels,
and the frequency and intensity of natural disasters simultaneously. They find that climate change
strongly intensifies global inequality and poverty, reinforces urbanization, and boosts migration
from low- to high-latitude areas.

Although these analyses have advantages in distributional effects and adaptation mechanisms,
they share critiques in structural modeling, including untestable functional forms, distributional,
and other modeling assumptions. The reduced-form approach is suitable for identifying key re-
sponse parameters causally, but it cannot account for the presence of feedback loops and general
equilibrium.As discussed by Timmins & Schlenker (2009), the two approaches can be used in con-
junction with one another to provide different perspectives on the same problem. Future research
calls for more interactions between the two approaches.

6. CONCLUSIONS

This article provides a review of recent economic studies investigating the effects of temperature
on labor productivity. Our review concludes by summarizing the key findings and future research
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directions. First, the adverse effects of extreme heat on economic growth are ubiquitous, from the
poor countries to the rich ones, from individual performance to country-level outputs. Second, the
losses from extreme temperatures are also reflected in mental productivity, including cognition,
learning, and consequential decisions.Third, the literature has found various adaptation behaviors.
These range from external strategies, such as air conditioning, to internal ones, such as autogenous
adaptation. Additionally, in utero exposure to extreme temperatures is particularly damaging, with
early-life exposure having profound effects on human development. The effects of temperature
can also vary across social and economic factors, such as income, gender, and race.

However, research is still required on several aspects of this topic. First, although the adverse
productivity impacts of extreme temperatures are substantial at both the micro and macro levels,
it is unclear to what extent the temperature impact on micro-level labor productivity explains the
impact on macro-level outputs. Second, compared with studies in the agricultural and industrial
sectors, studies on the effects of temperature in the service sector are relatively scant. Third, most
existing studies have focused on the contemporaneous effects of temperature, whereas the long-
term effects (e.g., impacts of early-life exposure to extreme temperatures) warrant more attention
because of the potential welfare gains from early interventions. Fourth,while adaptation behaviors
have been detected by many studies, the findings are not conclusive, and there is a challenge in
attributing a causal relationship between temperature effects and observed adaptive behaviors.
Lastly, the current findings on distributional effects are largely limited to income, gender, and race,
and the causes of heterogeneous effects are not clear. Understanding the source of heterogeneity
is crucial because it leads to different policy solutions.
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