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1 Introduction

Firms in developing countries are vulnerable to adverse productivity shocks, partic-

ularly when underdevelopment exacerbates the risks and costs associated with these

fluctuations (Jayachandran, 2006). Therefore, understanding how firms are affected by

and respond to such shocks is of significant interest. Among these shocks, air pollution

emerges as a serious global concern, posing threats to public health, environmental sus-

tainability, and economic development. Given its significance, an emerging literature has

documented air pollution’s detrimental impact on firms’ productivity, from particular

occupations such as fruit picking (Graff Zivin and Neidell, 2012), garment assembly (Ad-

hvaryu et al., 2022), pear packing (Chang et al., 2016), call centre services (Chang et al.,

2019) or textile assembly (He et al., 2019), to a country’s (China) manufacturing sector (Fu

et al., 2021).

Building on these works, in particular Fu et al. (2021), we investigate the causal impact

of air pollution on trade through its effect on labor productivity. Firm-level productivity

is crucial in determining trade performance (Melitz, 2003; Bernard et al., 2012; Melitz and

Redding, 2014, etc.), making it important to understand the interplay between air pol-

lution, productivity, and trade outcomes. Furthermore, international trade can amplify

local pollution impacts into broader macro-level effects, potentially shaping a country’s

comparative advantage in the global market. By delving into these aspects, we aim to

shed light on the intricate interplay between air pollution and the dynamics of interna-

tional trade.

To guide our empirical analysis, we develop a variant of the multi-product heteroge-

neous firm model by Bernard et al. (2007, 2010) and Ma et al. (2014). In this model, firms

are heterogeneous in their level of productivity, and their product varieties vary in at-

tractiveness to consumers relative to other producers of the same products. Firms utilize

capital and labor to produce multiple products, with labor productivity being negatively

affected by air pollution. The model provides several key insights. First, increased local
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air pollution lowers labor productivity and thus the firm-product level exports, particu-

larly for labor-intensive products. Second, the adverse impact of air pollution prompts

exporters to discontinue labor-intensive varieties that are more susceptible to the effects

of air pollution. Lastly, we extend the model to incorporate fixed costs to adopt endoge-

nous anti-air pollution technology, revealing that the adverse effects of air pollution on

exports are mitigated for more productive or larger firms.

We combine transaction-level export data from China Customs that cover all transac-

tions of Chinese exporters from 2000 to 2007 with satellite-based nationwide air pollution

data. Our study period coincides with a unique episode of China’s fastest-growing air

pollution as well as trade. Figure 1 plots the average concentrations of PM2.5 across all

counties and the total value of exports spanning from 1995 to 2010. Generally, PM2.5 con-

centrations exhibited substantial growth during this period. By 2007, the average PM2.5

concentrations exceeded 64.51 µg/m3, which is more than six times higher than the World

Health Organization’s (WHO) recommended annual mean standard of 10 µg/m3 (WHO,

2005). At the same time, exports increased significantly over this period. In 2000, China’s

total export value was 249 billion US dollars. By 2007, it had risen nearly fivefold to reach

1,220 billion US dollars.

In the empirical analysis, the key challenge in estimating the causal effect of air pol-

lution on firms’ export performance arises from the simultaneous impact of air pollution

and exports on each other. To deal with endogeneity concerns arising from the simultane-

ous impact of air pollution and exports on each other, we use thermal inversion, a widely

used instrumental variable for air pollution in the literature (Arceo et al., 2016; Hicks et al.,

2016; Jans et al., 2018; Dechezleprêtre et al., 2019; Sager, 2019; Khanna et al., 2021; Fu et al.,

2021; Chen et al., 2022). Thermal inversion is an exogenous meteorological phenomenon.

During thermal inversions, the warmer air layers sit above the cooler air layers, acting as

a cap on the upward movement of air from the layers below and thus trapping air pol-

lutants near the ground. Our estimates indicate that the instrument is highly predictive
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and reveals more negative effects on labor productivity and exports than OLS estimates.

We organize our empirical estimations into three parts. First, we estimate the aver-

age effect of PM2.5 on exporting firms’ labor productivity and firm-product level export

performance. We find that a 1% increase in PM2.5 leads to a 0.95% decrease in labor pro-

ductivity measured by value-added per worker at the firm level and a 0.89% decline in

firm-product level export revenue. At the sample mean level of PM2.5, the result implies

that a 1 µg/m3 rise in PM2.5 reduces firm-level labor productivity by approximately 1.33%

and firm-product level export by about 1.25% on average.1 To provide context for the

effect’s magnitude, at the sample mean of annual firm-product export value, a 1% nation-

wide increase in annual PM2.5 concentration results in approximately $5,596 reduction in

export revenue per year at the firm-product level. Across all firm-product export flows,

this amounts to around three billion US dollars annually, accounting for about 1.2% of

China’s total goods export in 2000 and 0.2% of China’s total goods export in 2007.

Second, we find that air pollution has a greater negative impact on the exports of rel-

atively more labor-intensive products. For the most labor-intensive quarter of the prod-

ucts, a 1% increase in PM2.5 concentration decreases exports by approximately 1%. This

negative effect is 17% higher than the effect on products with average labor intensity. In

contrast, the impact for the least labor-intensive quarter is approximately 0.73%, which is

14% lower than the effect on products with average labor intensity.

Third, we investigate exporting firms’ responses accordingly. Based on firm-product

level estimations, firms respond to air pollution shocks by subsequent cessation of exports

for relatively more labor-intensive products. Specifically, for the most labor-intensive

quarter of the products in the sample, a 1% increase in annual PM2.5 exposure increases

the linear probability of the firm discontinuing these products by about 0.03% next year.

1Our findings regarding the magnitudes of the effects on labor productivity align with previous litera-
ture. For instance, Fu et al. (2021) reported a 0.8% reduction in productivity for a 1 µg/m3 increase in PM2.5

using data from China’s above-scale manufacturing firms. Our estimate is slightly larger because we in-
clude only exporting firms in the Annual Survey of Manufacturing Enterprises (ASME) database. Exporters
in this database exhibit a higher average labor intensity compared to non-exporters (Huang and Ottaviano,
2023), potentially increasing their susceptibility to the impacts of air pollution.
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Firm-level estimations of product scope restructuring also confirm this pattern. A 1%

increase in air pollution raises the probability of dropping existing products by 0.47%.

These effects are mainly driven by transitions away from products with higher labor in-

tensity compared to the exporter’s previous labor intensity.

Additionally, according to the model predictions that the impacts of air pollution are

heterogeneous by firms, the empirical results reveal significant heterogeneity in impacts

based on firm size and ownership. Above-median-sized exporters experience only 33% of

the negative impact compared to below-median-sized exporters, conditional on the same

labor intensity. At last, we do not find any significant impact on firms’ entry and exit in

export markets, thereby eliminating potential concerns regarding sample selection bias

arising from firms’ endogenous location choices based on air pollution.

This paper contributes to several strands of literature. First, we contribute to the liter-

ature on air pollution’s social and economic consequences. While previous research has

explored the effects of air pollution on various outcomes such as mortality, obesity, mi-

gration, labor market decisions, real GDP, income, and housing values (Chay and Green-

stone, 2005; Graff Zivin and Neidell, 2012; Hanna and Oliva, 2015; Deryugina et al., 2019;

Dechezleprêtre et al., 2019; Deschenes et al., 2020; Barwick et al., 2022), this study is the

first to examine its causal impact on international trade, and shows that air pollution

dampens firms’ comparative advantage in labor-intensive varieties through its detrimen-

tal effect on labor productivity. On the other hand, while a vast amount of literature on

international trade has studied how trade affects pollution,2 pioneered by Grossman and

Krueger (1991), studies on how pollution affects trade are scarce. Understanding this

causal relationship is crucial, as trade can serve as a conduit for environmental effects

that are regionally localized to have macro-level consequences like comparative disad-

vantage. In other words, pollution in one region can affect the trade competitiveness of

2This is an incomplete list of these papers: Antweiler et al. (2001); Copeland and Taylor (2004); Frankel
and Rose (2005); Chintrakarn and Millimet (2006); Levinson (2009); Cherniwchan (2017); Wang et al. (2017);
Shapiro and Walker (2018); LaPlue (2019); Bombardini and Li (2020); Gong et al. (2023)
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firms in that region, leading to broader economic consequences. However, one of the key

challenges in establishing causality in this context is the simultaneous impact of air pol-

lution and exports on each other. This study fills this void by using thermal inversions,

an exogenous meteorological phenomenon, to estimate the causal effect of air pollution

on trade.

Second, this study contributes to the literature on firms’ responses to labor shocks. A

closely related recent study is Adhvaryu et al. (2022), which documents that managers

reassign workers to mitigate worker-task level productivity losses caused by air pollu-

tion based on the data of an Indian ready-made garment firm. We employ similar air

pollution shocks but focus on how firms alter their product varieties with varying labor

intensity to buffer the negative impact. Moreover, instead of using data regarding one

particular worker type, or small sets of firms, our analysis utilizes highly disaggregated

firm-product level export data, allowing for nationwide estimates and a relatively longer-

term examination of firms’ response to air pollution.

Additionally, Imbert et al. (2022) investigates the impact of labor supply shocks result-

ing from rural-urban migration, demonstrating that increased immigration leads to more

labor-intensive manufacturing production. This shift is characterized by the adoption of

labor-oriented technological advancements and a greater share of labor-intensive product

varieties. In contrast, Hau et al. (2020) examines labor cost shocks driven by minimum

wage policies, highlighting how such policy changes drive the substitution of labor with

capital, consequently reducing employment growth. Our study focuses on a distinct type

of shock - air pollution, which directly affects labor productivity. We show that when

firms experience adverse labor productivity shocks due to air pollution, their exports de-

cline disproportionately for products with varying labor intensity, and they respond by

shifting their export product scope towards less labor-intensive products. Importantly,

our analysis employs highly disaggregated trade data at the firm-product level, provid-

ing a finer-grained understanding of how firms adapt to air pollution-induced productiv-
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ity shocks in comparison to studies using macro-level or survey data, which may suffer

from biases or lack granularity (Jones and Olken, 2010).

Third, this paper relates to the literature on multi-product firms (MPFs) in the in-

ternational trade and industrial organization literature. Recent theoretical studies in in-

ternational trade have primarily focused on the number of products firms produce and

the importance of core products for firm growth (Feenstra and Ma, 2007; Arkolakis et al.,

2021; Dhingra, 2013; Eckel and Neary, 2010; Mayer et al., 2014). Additionally, several MPF

studies have examined how trade liberalization affects firms’ product diversification and

specialization(Feenstra and Ma, 2007; Nocke and Yeaple, 2014; Bernard et al., 2011; Ma et

al., 2014; Mayer et al., 2021). We contribute to this literature by empirically identifying the

role of air pollution in determining the direction of firms’ product scope adjustment.

Lastly, our study contributes to the prevailing literature on the interplay between trade

and environmental regulations and also has important policy implications. While exist-

ing research predominantly focuses on the adverse impact of regulatory policies on trade

and economic output, our findings highlight the role of air pollution as a discernible

comparative disadvantage for labor-intensive goods, implying that environmental pro-

tection policies may instead stimulate trade by promoting labor productivity, particularly

in labor-abundant economies. Thus, the implications of our study also extend to policy

considerations, specifically for developing nations aiming to balance export growth and

environmental preservation.

The rest of this paper is structured as follows. Section 2 presents the theoretical expla-

nation. Section 3 details the empirical strategy. Section 4 describes the data and measure-

ments. Section 5 presents the estimation results. Section 6 concludes.
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2 A Simple Model on Pollution and Trade

To guide our empirical analysis, we present a simple, partial equilibrium model to

analyze the impact of air pollution on exports. The model is a variant of the multi-product

Melitz type of heterogeneous firm model similar to Bernard et al. (2007, 2010, 2011) and

Ma et al. (2014). The environment is a world consisting of two countries: Home (H) and

Foreign (F), and heterogeneous firms produce multiple products with two factors: capital

and labor. Below we start with the consumer side.

2.1 Preferences

Consumers in two countries consume a continuum of products with identical prefer-

ences, and thus we ignore the notation of country in this subsection. The utility function

is given by:

U =

[∫ 1

0

Qν
sds

] 1
ν

, (1)

where κ ≡ 1/(1 − ν) > 1 is the elasticity of substitution between products. Within a

product, firms produce horizontally differentiated varieties, facing their demand. The

consumption index for product s, Qs, takes the following form:

Qs =

[∫
ω∈Ωs

(λs(ω)qs(ω))
ρ dω

] 1
ρ

, 0 < ρ < 1 (2)

where σ ≡ 1/(1−ρ) > 1 is the elasticity of substitution between varieties within a product.

We assume that the elasticity of substitution between varieties within a product is larger

than that between products (σ > κ > 1). λs(ω) ≥ 0 is the represented consumer’s tastes

for a firm’s variety ω within product s.3

3One interpretation of the parameter λs(ω) is product quality, though it also captures other more subjec-
tive characteristics of a firm’s variety that influence the representative consumer’s demand for that variety.
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Consumer utility maximization yields the expenditure on each variety:

xs(ω) = ps(ω)
1−σ · λs(ω)

σ−1 · P σ−1
s Rs (3)

where Rs stands for domestic expenditure spent on product s:

Rs =

 P
−ν
1−ν
s∫ 1

0
P

−ν
1−ν
s ds

 ·R (4)

where R is the total expenditure of the economy, Ps =

[∫
ω∈Ωs

(
ps(ω)
λs(ω)

)1−σ

dω

] 1
1−σ

is the ideal

price index for product s, P = [
∫ 1

0
P (s)

−ν
1−ν ds]

1−ν
−ν is the ideal price index for the economy.

2.2 Production

Firms are heterogeneous in their level of productivity by drawing their productiv-

ity φ from the distribution G(φ). φ is firm-specific and is constant across countries and

products. Each firm produces multiple products with varying factor intensities. The

market structure of each product is a monopolistic competition. Products are imperfect

substitutes in demand and, within each product, firms supply horizontally differenti-

ated varieties of the product facing random consumer taste shocks. More specifically,

each firm draws a set of “consumer taste” attributes for each potential product produced,

λs ∈ [0,∞) from a distribution H(λs). The set of λs is firm-product specific and is constant

across countries.

Firms use both capital and labor to produce product s with the Cobb-Douglas produc-

tion form. More specifically, the firm with productivity φ has the following cost function

for output qs of product s:

TCs(φ) =
qs
φ
(

w

A(z)
)βsr1−βs + fs (5)
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where qs is the firm’s output of product variety s, w and r are the wage rate and the

rental rate, respectively. We choose the rental rate as the numeraire (i.e., r = 1). fs is the

fixed cost of production for product s, measured as units of the numeraire. Therefore,

TCs(φ) = qs
φ
( w
A(z)

)βs + fs. β(s) represents labor intensity for product s. Without loss of

generality, we rank product index s ∈ [0, 1] so that β(0) = 0, β(1) = 1, and β′(s) > 0 (i.e.,

labor intensity is increasing in product index s).

A(z) is the labor-augmenting technology, which decreases in the level of air pollution

z, i.e., A′(z) < 0. A large literature has documented that air pollution has detrimental

physical and mental health effects on workers (Graff Zivin and Neidell, 2012; Chang et

al., 2016, 2019; He et al., 2019; Adhvaryu et al., 2022). The recent study Fu et al. (2021)

also shows that air pollution reduces the labor productivity of manufacturing firms in

China. More specifically, we assume A(z) = αz−θ, where α > 0, θ > 0. We also normalize

the minimum level of air pollution as 1, i.e., z ≥ 1. θ measures the (absolute) elasticity

of labor-augmenting technology w.r.t the level of air pollution. Thus, a higher value of θ

indicates a more severe effect of air pollution on labor-augmenting productivity.

2.3 Air pollution and firm exports

To serve the foreign market, firms must incur a fixed cost of Fs and an iceberg variable

trade cost such that τ > 1 units must be shipped from home country for one unit to

arrive in foreign country, which is assumed to be identical for all products for simplicity.

Given the CES preference, firm’s profit maximization implies a constant mark-up over

the marginal cost, thus, the optimal exporting price is given by:

pFs (φ) =
σ

σ − 1
·
τ · ( w

A(z)
)βs

φ
(6)

Plugging equation (6) into equation (3), we can obtain firm’s export revenue by selling
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its variety of product s to the foreign country:

xF
s

(
φ, λF

s

)
= RF

s ·

 ρP F
s φ · λF

s

τ ·
(

w
A(z)

)βs


σ−1

(7)

where RF
s denotes aggregate expenditure on product s in foreign country and P F

s de-

note the corresponding price index. Taking logarithm at both sides of equation (7), and

plugging in A(z) = αz−θ yields:

lnxF
s = lnRF

s +(σ−1) ln
(
ρP F

s φλF
s

)
−(σ−1) ln τ−(σ−1)βs lnw+(σ−1)βs lnα−(σ−1)βsθ ln z

(8)

By taking the derivative of lnxF
s with respect to ln z, we obtain the impact of air pollu-

tion on firm’s export of product s:

∂ lnxF
s

∂ ln z
=

∂ lnxF
s

∂ lnA(z)

∂ lnA(z)

∂ ln z
= −(σ − 1)βsθ (9)

Proposition 1.

• ∂ lnxF
s

∂ ln z
< 0. Thus, ceteris paribus, an increase in air pollution lowers labor productivity and

thus the firm’s exports of product s.

• ∂2 lnxF
s

∂ ln z∂βs
= −(σ − 1)θ < 0. This implies that the detrimental impact of air pollution on

firm-product exports is stronger for labor-intensive products.

Note that firms must pay a fixed cost of Fs (measured as units of the numeraire) to

serve the foreign market, thus firms’ profit of exporting product s is:

πF
s

(
φ, λF

s

)
=

xF
s

(
φ, λF

s

)
σ

− Fs, (10)

Clearly, this profit is increasing in foreign consumer tastes λF
s . Thus, it may be non-

profitable for firms to export their product varieties if their foreign consumer tastes are
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lower than some thresholds. We can solve the cutoff of foreign consumer tastes λF∗
s from

the zero-profit condition of πF
s

(
φ, λF∗

s

)
= 0, which yields:

λF∗
s (φ, z) =

τ(σFs/R
F
s )

1
σ−1 ( w

A(z)
)βs

ρP F
s φ

, (11)

Note λF∗
s (φ, z) increases in air pollution z as air pollution raises the marginal production

cost. Note that the firm φ will export its variety if its foreign consumer taste λ > λF∗
s ,

thus its expected exporting probability 1−H(λF∗
s ) will decrease if the air pollution rises.

In other words, some varieties with low foreign consumer tastes must exit the foreign

market upon air pollution shocks domestically. Meanwhile, λF∗
s (φ, z) decreases in firm

productivity φ as more productive firms charge lower exporting prices, export more, and

earn higher profits for given foreign consumer tastes. Thus, for given foreign consumer

tastes, more productive firms are more likely to export their product varieties.

Taking derivative of lnλF∗
s (φ, z) with respect to ln z yields:

∂ lnλF∗
s (φ, z)

∂ ln z
=

∂ lnλF∗
s (φ, z)

∂ lnA(z)

∂ lnA(z)

∂ ln z
= θβs (12)

Based on this result, we can show the second proposition of air pollution on firms’ prod-

uct scope adjustment.

Proposition 2.

• ∂ lnλF∗
s (φ,z)

∂ ln z
> 0. Thus, an increase in air pollution in the Home country will raise the cutoff

threshold of foreign consumer tastes, ceteris paribus, implying that exporters may drop some

varieties with low consumer tastes due to the air pollution shock.

• ∂2 lnλF∗
s (φ,z)

∂ ln z∂βs
> 0. The foreign consumer tastes threshold will increase more for labor-intensive

products upon air pollution shocks at Home. Thus, more export varieties are likely to be

dropped in labor-intensive products as air pollution increases.
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2.4 Extension: anti-pollution technology adoption

In the previous section, we assume that the impacts of air pollution on firms’ labor

productivity are homogeneous, i.e., the value of θ is the same across firms. However,

in reality, it is possible that some firms may adopt anti-air pollution technology to mit-

igate its negative effects on their workers. For example, firms can purchase air cleaners

for indoor workers or anti-particulate masks for outdoor workers. A simple and natural

approach is to assume that firms can pay a fixed cost fT (measured as units of the nu-

meraire) to adopt the anti-pollution technology, which better protects their workers from

air pollution so as to mitigate the negative effect on labor productivity. Note the fixed cost

fT is at the firm level, which is not specific to a particular market that the firm serves or a

particular product that the firm produces.

We assume the genetic value of θ without anti-pollution technology is θN , and firms

that adopt the anti-pollution technology can mitigate the detrimental impact of air pol-

lution on labor productivity and thus have a lower value of θT , i.e., θN > θT . Given this

setting, the relative labor productivity with anti-pollution technology to without anti-

pollution technology is AT (Z)/AN(Z) = zθN−θT ≥ 1 for z ≥ 1. This suggests that the

anti-pollution technology in nature can boost labor productivity, particularly when firms

are facing severe air pollution.

It is easy to show that more productive firms will choose to adopt the anti-pollution

technology as they have high operating profits to cover the fixed cost of technology adop-

tion. As more productive firms are large in terms of export sales, we have the third fol-

lowing testable proposition.

Proposition 3. As more productive firms choose to adopt the anti-pollution technology, the neg-

ative effects of air pollution on firms’ exports will be smaller for more productive or larger firms.4

See the proof in the Appendix.

4Given the heterogeneous firm’s cost function in equation (5), a more productive firm will have larger
output and revenue compared to a less productive one.
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In summary, our model predicts that air pollution has negative effects on firms’ ex-

ports, particularly for labor-intensive products through the channel of lowering labor

productivity. As a response, exporters will drop more labor-intensive varieties. More-

over, more productive firms can choose to adopt anti-pollution technologies, thus the

negative effects of air pollution on their exports will be smaller. Next, we will proceed to

the empirical testing of our theoretical predictions.

3 Empirical Strategy

3.1 Identification strategy

Building on Fu et al. (2021), we investigate the causal impact of air pollution on trade

through its effect on labor productivity. The endogeneity concerns arise from the simul-

taneous impact of air pollution and exports on each other. On the one hand, exports

naturally bring more production activities and subsequently generate more air pollutant

emissions. Meanwhile, international trade increase local residents’ incomes, which in

turn encourages them to seek cleaner air and a healthier environment through emissions

control or factory pollution monitoring. On the other hand, air pollution is harmful to

people’s health, diminishes workers’ productivity, and hence restrains firms’ outputs and

exports as predicted by our model. Thus, the issue of simultaneity bias between air pol-

lution and exports would cause an under-or overestimation of the effects of air pollution

on firms’ exports if we simply regress firms’ exports on air pollution using the OLS esti-

mation method.

In addition, other confounding factors, such as economic policies, environmental reg-

ulations, and other unobservable time-varying county characteristics, could simultane-

ously affect air pollution levels and local exporting firms’ performance, potentially bias-

ing the estimated results. For instance, counties or prefectures with better local amenities

or economic development may have more severe air pollution while also exporting more,
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which leads to an underestimation of the impact of air pollution on firms’ exports. In

addition, time trends of economic development or environmental regulations can affect

both firm export performance and air pollution.

To address the simultaneity and omitted variable bias mentioned above, we employ

an instrumental variable approach to estimate of the causal effect of air pollution on firm

export performance. The instrument, thermal inversion, is a meteorological phenomenon

that can influence air pollution while being uncorrelated with local firms’ export perfor-

mance and behaviors, except through its impact on air pollution, after accounting for

various weather conditions. Normally, as altitude increases, air temperature decreases.

However, during a thermal inversion episode, air temperatures rise with increasing alti-

tude in the Earth’s atmosphere. One significant consequence of thermal inversion is the

occurrence of haze or smog, due to the warmer air layers trapping dust and air pollutants

near the ground.5 This identification strategy, utilizing thermal inversion as an instru-

ment for air pollution, has been employed in several studies to estimate the effects of air

pollution on various outcomes, including infant mortality, pro-cyclical mortality, child

health, real GDP, road safety, migration, and firm productivity (Arceo et al., 2016; Hicks

et al., 2016; Jans et al., 2018; Dechezleprêtre et al., 2019; Sager, 2019; Khanna et al., 2021;

Fu et al., 2021; Chen et al., 2022).

Since thermal inversions are meteorological phenomena that occur in the upper atmo-

sphere, their formation can be presumed independent of economic activities. Figure 1a

plots the average number of thermal inversion days per year in China over the period

1995-2010, with vertical dashed lines highlighting the selected sample period of 2000-

2007. Unlike air pollutants, there is no clear time trend in the occurrence of thermal

inversions. This became particularly relevant after 2001 when the sharp increase in air

pollutants was accompanied by the rapid export growth following China’s accession to

5It is important to note that thermal inversions can affect other pollutants as well and may not be solely
correlated with PM2.5. Therefore, our estimates can represent the effects of air pollution more generally and
not exclusively attributed to PM2.5, as noted in Fu et al. (2021).
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the WTO. Figure 1b further supports this point by illustrating annual export revenue and

the average annual cumulative thermal inversions across all counties in China from 1995

to 2010. Export revenue exhibits a clear positive trend, while the number of thermal inver-

sions per year experiences high fluctuations but does not have a discernible time trend.

Two panels in Figure 1 together provide evidence that thermal inversions create country-

level fluctuations in air pollution that are not influenced by structural sources, such as

export development.

Figure 2 provides additional evidence that thermal inversions are not correlated with

export at the county level. It depicts the log difference in export revenue (X-axis) and

the log difference in inversions (Y-axis) for each county in China between 2000 and 2007.

Counties with the highest increase in export do not necessarily experience the highest

increase or decrease in thermal inversions. The fitted line representing the relationship

between the change in export and thermal inversions appears nearly horizontal, indicat-

ing an insignificant association with an R-squared value of 0.00693. Together, Figures 1

and 2 indicate a lack of correlation between exports and thermal inversions at both na-

tional and county levels.

To investigate whether the detrimental impact of air pollution on firm-product exports

is stronger for labor-intensive products as implied by Proposition 1, we then utilize the

rich six-digit HS product information with significant variations in labor intensities in the

customs trade data. To measure the labor intensity for each HS product, we merge the

Annual Survey of Manufacturing Enterprises data collected by the National Bureau of

Statistics (hereafter referred to as ASME data set) with firm-product-year level customs

trade data, following the procedure of Ma et al. (2014) and Yu (2015). Using the merged

data set in 2000, we construct several measures of the labor intensity of each HS6 prod-

uct, such as the log ratio of labor to capital, the total labor costs in value-added, and

the employment share of unskilled workers (workers without high school degrees). The

computation methods are similar to the approach used in Bernard et al. (2010) and Ma et

15



al. (2014), and are discussed in detail shortly in Section 4.3. Using product variations in

labor intensity, we can directly test whether air pollution instrumented by the thermal in-

version has stronger negative effects on the firm exports of labor-intensive products and

thus exit more in those products in foreign markets.

3.2 Econometric specification

To implement our identification strategy, we adopt the following baseline specifica-

tion:

lnYfht = β0 + β1 lnPMct + γ′Wct + αfh + αt + εfht, (13)

where f indexes firm, h indexes 6-digit HS code, c indexes the county where the firm

locates, and t indexes year. lnYfht is the dependent variable of interest in the natural log-

arithm (e.g., firm-product level export revenue or quantity). αfh and αt are firm×product

fixed effects and year fixed effects.6 PMct is the PM2.5 concentration at the county-year

level, measured in micrograms per cubic meter (µg/m3). Wct denotes a set of weather

conditions, and ε is the error term. The main coefficient of interest is β1, representing the

effects of air pollutants on firm-product level export revenues, which is expected to be

negative. The standard error of the regression is clustered by county to allow for possible

correlation within the county.

As we discussed above, the OLS estimation of this specification would lead to biased

estimates due to the endogeneity issue of air pollution. Thus, we adopt the two-stage least

squares (2SLS) estimation by using the thermal inversion TIct, measured by the number

of thermal inversion days in the firm f ’s locating county c in year t, as the instrument

of air pollution PMct. As thermal inversion often correlates with weather conditions,

we control for the vector of weather variables Wct in both stages to ensure the exclusion

6Firms that have reallocated across counties (about 9% of the sample) are excluded from the sample.
Thus, each firm (f ) is uniquely matched with a county c, and all time-invariant county-specific factors can
also be absorbed by αfh.
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restriction(Arceo et al., 2016). In particular, we use the number of days within each 20-

quantile bin of temperature, relative humidity, wind speed, sunshine duration, pressure,

and cumulative precipitation to account for the heterogeneous effect of extreme weather

events (Deschenes et al., 2017; Fu et al., 2021).

There are two additional issues relevant to the validity of our instrument and the iden-

tification of causal effects. Firstly, thermal inversion can change the effectiveness of fertil-

izer and pesticides, so it could affect the output of agriculture directly, rather than via air

pollution, which violates the orthogonality requirement for instrument variables. There-

fore, we exclude all agricultural products from the sample. Secondly, during the sample

period, over 20% of Chinese exports were through trading intermediaries (Ahn et al.,

2011), for which the exact county of the original production cannot be identified. There-

fore, we exclude all trade intermediaries from the sample.

Next, to explore the heterogeneous effects of air pollution on firms’ exports across

products with varying labor intensities, we include the interaction term of air pollution

and product labor intensity as follows:

lnYfht = β0 + β1 lnPct + β2L/Kh · lnPct + γ′Wct + αfh + αt + εft (14)

where L/Kh denotes the demeaned labor intensity for each HS 6-digit product h at the

initial year of 2000. As we center L/Kh in the interaction term around its mean, β1 cap-

tures the effect of air pollution on firm exports for products with average labor intensity,

which is expected to be negative. Moreover, the key coefficient of interest, β2, captures

the heterogeneous effect of air pollution on firm export based on the labor intensity of

products. According to Proposition 1 of our model, we anticipate that air pollution will

have a stronger negative impact on the exports of labor-intensive products. Hence, we

expect β2 to be negative. Note one additional advantage of using the variations in labor

intensity across products is that we can also include the county-year fixed effects αct to

17



capture all time-varying and time-invariant county factors.

Lastly, we adopt a linear probability model to study how air pollution affects ex-

porters’ decisions in dropping or continuing their products in the foreign market. We

define the dependent variable Dropfht equal to one if and only if firm f exports product

h at time t− 1 but not at time t, and adopt the similar specification as follows:

Dropfht = θ0 + θ1Pct−1 + θ2L/Kh · Pct−1 + γ′Wct−1 + λ′Xfht + αfh + αt + εfht (15)

We use air pollution with a one-year lag as firms’ decisions on dropping or continuing ex-

porting after air pollution shocks are only observed accurately in the next year. Moreover,

following Bernard et al. (2010), we also include a vector of other firm-product level control

variables Xfht: relative firm-product tenure, and the relative size of a specific product to

the firm’s export revenue. Specifically, firm-product tenure is the length of time the firm

has exported the product, measured relative to their averages via log differencing each

year. We expect that a rise in air pollution increases exporters’ probability of dropping a

more labor-intensive product, and thus θ2 is expected to be positive.

Although we show that thermal inversions can lead to fluctuations in air pollution in

the first stage, an important feature of the variation in air pollution caused by thermal

inversions is its eventual return to the mean, as partly shown in Figures 1 and 2. This

raises the question of why exporting firms would adjust their product scope in response

to a transitory shock. One plausible explanation is exporting firms have imperfect infor-

mation on the sources of air pollution. In practice, firms lack the ability to distinguish

between permanent and transitory changes in air pollution and, therefore, might rely on

past observations to update predictions regarding future pollution levels. This procedure

is similar to a Bayesian updating process (Harrison and Stevens, 1976).

The hypothetical Figure 3 visually demonstrates this updating mechanism. For two

distinct counties, the solid dark lines represent air pollution fluctuations attributed to
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factors other than thermal inversions, while the solid light lines represent full air pollu-

tion fluctuations. The gap between each pair of solid lines represents variations solely

induced by thermal inversions. However, exporters can only perceive the effect caused

by air pollution regardless of the sources, which is represented by the light lines. And

no publicly available information that specifies the portion of observed air pollution aris-

ing from transitory meteorological factors, such as thermal inversions. When exporters

perceive an air pollution change caused by a thermal inversion, they will update their

expectations as illustrated by dashed lines, even if the change is transitory in nature. This

explains why exporters would react to air pollution induced by thermal inversions.

4 Data and Measurements

4.1 Firm-product level export data

Our study relies on a highly disaggregated firm-product level export dataset from

China’s General Administration of Customs, encompassing all export flows from 2000 to

2007. This dataset provides detailed information on Chinese export transactions, includ-

ing export values, quantities, quantity units, HS 6-digit categorization, and firm-specific

information such as registered name, address, and ownership. Each observation in our

sample represents a unique firm–HS6–year trade flow. We carefully verify the consistency

of quantity units across all transaction records within each firm-HS6-year trade flow, en-

suring that the traded quantities can be accurately aggregated. Furthermore, we enhance

the dataset by obtaining geospatial information for each firm using the GaodeMap API.

Using the registered name, address, and prefecture information in each firm’s registration

code, we can pinpoint the location of each exporting firm at the county level. This geocod-

ing process allows us to match the firm data effectively with the corresponding county-

year-level environmental data. The success rate of geocoding China’s customs data is

reported in Table A1. In total, 88% of exporting firms listed in the Customs database from
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2000 to 2007 were successfully geocoded, accounting for 98% of the total export value.

4.2 County-level air pollution, thermal inversions, and weather data

We obtain the air pollution and thermal inversion data from the Modern-Era Retro-

spective Analysis for Research and Applications version 2 (MERRA-2) maintained by

the National Aeronautics and Space Administration (NASA) of the U.S.7 The data are

reported at each 0.5◦×0.625◦ latitude by longitude grid (around 50 km × 60 km). We

transform the grid-level data to county-level for our analysis.8

Air pollution data are collected by remote-sensing satellite-based Aerosol Optical Depth

(AOD) retrieval techniques. AOD measures the amount of sunlight duration absorbed,

reflected, and scattered by particulate matter in the air. It provides accurate measures

of ground-level PM2.5. The AOD-based pollution data closely aligns with data collected

by ground-based monitoring stations (Gupta et al., 2006; Kumar et al., 2011; Chen et al.,

2022). We use AOD data because it covers the entire country, in contrast to ground-based

data, which is confined to a few cities. In our empirical estimations, we compute annual

county-level surface PM2.5 concentrations by averaging monthly data, following Buchard

et al. (2016).

As for thermal inversions, the measurement is computed according to Fu et al. (2021).

A thermal inversion is identified for each 6-hour interval when the temperature of the

second layer of the atmosphere (320 meters) is higher than that of the first layer (110

meters). We aggregate the number of days with at least one thermal inversion per year

for each county to construct the county-year thermal inversion data.

The weather data are collected by the National Meteorological Information Center of

7The air pollution data can be downloaded at https://disc.gsfc.nasa.gov/datasets/
M2TMNXAER_5.12.4/summary. The thermal inversion data can be downloaded at https://disc.
gsfc.nasa.gov/datasets/M2I6NPANA_V5.12.4/summary.

8We first downscale the 50*60-km grid to 10*12-km grid using the bilinear method (Hijmans et al., 2015)
to better accommodate counties that are smaller than 50*60-km. We then take the spatial average for all
downscaled grids within each county (see Fu et al. (2021)).
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China, which operates over 800 weather stations nationwide. The set of weather control

variables includes barometric pressure (hectopascal), relative humidity (%), precipitation

(mm), sunshine duration (hour), temperature (degree centigrade ◦C), and wind speed

(m/s). To match with other data in our analysis, we first convert the original station-

level weather data to county-level using the inverse-distance weighting (IDW) method

(Deschênes and Greenstone, 2011). This method assigns greater weight to stations closer

to the geographic centroid. Next, we convert the daily weather data to an annual fre-

quency by dividing it into 20 quantiles for each weather variable and counting the days

in the year that fall within each quantile bin. This approach allows us to account for the

differential effects of extreme and normal weather events (Deschenes et al., 2017).

4.3 Product level labor intensity

To compute HS6 product level labor intensity measures, we merge the firm-level An-

nual Survey of Manufacturing Enterprises (ASME) data with the transaction-level cus-

toms export data. The ASME data provides information on firm-level input factor costs,

such as total employment, total wage bills, unemployment insurance, bonuses, welfare

funds, the original value of fixed assets, and the net value of fixed assets. However, the

ASME data does not include information on firms’ product scope. On the other hand, the

customs export data contains complete information on firms’ export performance and

the product scope of each exporter but lacks firm-level input factor information. These

two data sets can be matched through a set of firm information, including firm name,

corporate representative name, zip code, location, and contacts. The matching method

and statistics are similar to those employed in previous studies that combine these two

datasets (Ma et al., 2014; Yu, 2015).

The process of computing HS6 product level labor intensity measures involves several

steps. First, we compute the labor intensity at the firm level using the ASME dataset. We

employ three different measures, which we will discuss in detail later. Second, we match
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these firm-level labor intensity measures calculated in the ASME data with the customs

export data, which provides information on the product scope of each exporter. Next, we

compute the HS6 product level labor intensity by computing the weighted average of the

labor intensity of all firms that export a particular product, with weights based on each

firm’s export revenue. This approach is similar to the method employed in Bernard et al.

(2010) and Ma et al. (2014).

The key step of computing HS6 level labor intensity measures is calculating each

firm’s labor intensity. We adopt three measures of firm-level labor intensity: (1) the

employment-to-real-capital ratio in logarithmic format. Total employment is measured

by the annual average employed workers. Real capital is calculated using the perpetual

inventory approach as described by Brandt et al. (2012), since the related variables in the

ASME data are reported in nominal terms and cannot be regarded as a firm’s capital stock

directly. We adopt this as our baseline measure of factor intensity, similar to that in Ma

et al. (2014) and Imbert et al. (2022). (2) The share of total labor cost in value-added. To-

tal labor cost includes wage bills, unemployment insurance, bonuses, and welfare funds.

This measure of labor intensity is consistent with the labor income share (βs) defined in

our theoretical model, which enables us to estimate a key parameter (θ) of the model.

In addition, this alternative measure of labor intensity complements the first measure by

accounting for labor quality employed by firms, since we use total labor cost instead of

employment to measure labor input (Qian and Zhu, 2012). (3) The percentage of workers

without a high school degree to total employment. Air pollution may affect less skilled

workers more than skilled workers. This could be related to the increased vulnerability

of less skilled workers to health problems caused by greater exposure to air pollutants,

often due to their less favorable working conditions. Therefore, we use the percentage of

the least-skilled workers in total employment as an alternative measure for labor inten-

sity. Note that we compute all three measures of labor intensities at the HS6 product level

using data in the initial year of our sample, 2000, to avoid any potential concerns about
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the impact of pollution on the firms’ decisions regarding labor and capital allocation.

4.4 Sample construction and summary statistics

The empirical estimation is mainly based on the combination of the above three data

sets. To ensure the accuracy and validity of our analysis, we take two essential steps

in the sample construction stage. Firstly, following Ahn et al. (2011), we identify trade

intermediary firms based on several key Chinese characters in the firm name, and exclude

them from our sample as their locations may not be the locations of production. Secondly,

we exclude firms that have relocated across counties to deal with potential concerns of

spatial sorting, endogenous choices of firm location, and self-selection biases. The impact

of removing these observations is limited as more than 91% of exporters stay in the same

county during the sample period. For more detailed statistics on firms’ relocation within

the sample period, please refer to Table A2.

Table 1 reports the key statistics of three different samples that we constructed for

the empirical estimations. The full sample comprises the firm-product level China’s cus-

tom export data from 2000 to 2007, combined with county-level air pollution data and

product-level labor intensity data. This is the main sample we used in the estimations.

The product scope adjustment sample is a subset of the full sample. Note that the variable

Dropfht indicating firms’ decision of discontinuation of exports, only applies to the exist-

ing products of the surviving firms. Therefore, it does not apply to the varieties exported

for the first time or observations in 2000, the sample’s initial year. For the ASME-exporter

sample, which is at the firm-year level, we include all exporting firms documented in the

ASME database between 2000 and 2007. This sample supplements our analysis, provid-

ing supporting evidence for the impact of air pollution on firms’ labor productivity.

23



5 Estimation and Results

We first show that air pollution has detrimental effects on the labor productivity of

exporters as it offers the premier for our analysis of the effects of air pollution on firm

exports. Next, we demonstrate the negative effects of air pollution on firm-product level

exports, which is stronger for labor-intensive varieties. As a response, firms adjust their

product scope by withdrawing their labor-intensive products in foreign markets. More-

over, we show that the impact of air pollution on firm exports is mitigated for larger

exporters and foreign-owned enterprises or state-owned enterprises. Finally, we show

that air pollution has no significant impact on firm entry and exit, and export quality.

5.1 The impact on labor productivity

Building on Fu et al. (2021), to provide empirical evidence on the main channel through

which air pollution affects export performance, we estimate the average effect of air pol-

lution on exporting firms’ labor productivity. Firm-level labor productivity is measured

by value-added per worker in the logarithm. As the customs trade dataset lacks infor-

mation on value-added and labor employment, we use exporters in the ASME dataset

from 2000 to 2007 to estimate the impact of air pollution on labor productivity. Table 2

presents the estimation result by employing two estimation methods: OLS and two-stage

least squares (2SLS) estimation.

In Table 2, column (1) presents the OLS estimate, which may be subject to simultaneity

and omitted variable biases, resulting in an underestimated coefficient. To address this

issue, we then turn to the 2SLS estimation in column (2). The bottom half of column (2)

presents the first-stage estimations, providing evidence that thermal inversion is a valid

instrument for PM2.5. The estimations show that, on average, a 1% increase in annual days

of thermal inversion increases annual PM2.5 pollution by 0.056%, controlling for weather

conditions. The coefficient is statistically significant, and the Kleibergen-Paap Wald F
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statistic for weak IV exceeds the critical value of 16.38, rejecting the null hypothesis of

a weak instrument problem. Given the sample mean of annual thermal inversion days

(123 days) and PM2.5 concentration (71.27 µg/m3), we can estimate that approximately

one additional day of thermal inversion increases PM2.5 by 0.046%, or about 0.033 µg/m3.

It is important to note that thermal inversions may affect other pollutants, such as SO2

and CO, in addition to PM2.5 (Arceo et al., 2016). Therefore, the estimated coefficient can

be interpreted as the impact of broader air pollution rather than solely the effect of PM2.5,

as noted in Fu et al. (2021).

The first stage demonstrates that thermal inversion is a reliable predictor of air pol-

lution. The second stage estimation yields a statistically significant coefficient of -0.946,

indicating that a 1% increase in air pollution concentration corresponds to a labor pro-

ductivity decrease of 0.95%. Through these estimations, we establish a causal relationship

between air pollution and labor productivity.

Considering the sample mean of PM2.5 concentrations (71 µg/m3), the estimated co-

efficient in column (2) (-0.946) suggests that a 1 µg/m3 in PM2.5 concentrations (equiv-

alent to 1.41% of the sample mean) corresponds to an approximate 1.33% reduction in

labor productivity for exporting firms in the ASME database. This estimate is a bit larger

in magnitude compared with the findings of Fu et al. (2021), who reported a 0.8% de-

cline in productivity for a 1 µg/m3 increase in PM2.5 concentrations, employing data from

China’s above-scale manufacturing firms. A possible reason for our larger estimates in

Table 2 is that we focus on exporters in China, which tend to be more labor-intensive than

non-exporters on average (Huang and Ottaviano, 2023), potentially rendering them more

susceptible to air pollution. In addition, our estimates exhibit larger effects compared to

studies that focus on particular worker types, or small sets of firms, such as Adhvaryu et

al. (2022); Chang et al. (2016, 2019). For instance, Chang et al. (2016) used employee data

from a call center in China and found that for a 1 µg/m3 increase in PM2.5, worker produc-

tivity, as measured by earnings per hour, decrease by roughly 0.8%. And Adhvaryu et al.

25



(2022) reported a 0.1% reduction in hourly worker productivity for a 1 µg/m3 increase in

fine particulate matter using data from an Indian garment firm. A possible reason for our

larger estimates is that we estimate annual cumulative effects rather than the shorter-term

effects examined in these studies.

In columns (3) and (4), we examine the heterogeneous effect of air pollution on firm

size by incorporating the variable LargeF irm and its interaction with instrumented air

pollution. The variable LargeF irm is a dummy variable indicating firms above the sam-

ple median in terms of size, measured by either output or value added. The results

demonstrate that larger firms experience less negative impact from air pollution on labor

productivity. In column (3), for above-median-size firms, a 1% increase in PM2.5 reduces

firm-level labor productivity by 0.78%. The effect is approximately 30% smaller than that

observed for below-median-size firms. This result aligns with our model prediction in

Proposition 3, suggesting that larger firms, characterized by higher productivity, can bet-

ter afford the fixed costs of adopting technology or equipment to mitigate the detrimental

impact of air pollution on productivity. Consequently, the adverse effect of air pollution

on export performance is expected to be less severe for larger firms compared to smaller

ones, which we will explore further in Section 5.5.

5.2 Causal effects of air pollution on firm exports

Next, we study how air pollution in China affects firm exports and how firms respond.

Table 3 displays the average effects of air pollution on firm-product level export value

and quantity, both measured in logarithms. We also present two estimation methods to

examine these effects. All columns include common covariates: firm×HS6 product fixed

effects, year fixed effects, and a vector of weather controls. In addition, robust standard

errors are corrected for clustering at the county level in parentheses.

The OLS estimates in columns (1) and (3) reveal a negative correlation between firm-

product export and county-level air pollution. The effect of the OLS estimates is smaller

26



than that of the 2SLS estimates. This discrepancy can be attributed to the simultaneity

problem, as increased production activity is likely to result in higher air pollution emis-

sions. We introduce thermal inversion as an instrument for PM2.5 to address the simul-

taneity and omitted variable biases. The 2SLS estimates with thermal inversion as an

instrument are reported in columns (2) and (4). This specification, as outlined in equation

(13), serves as our baseline model.

The bottom half of columns (2) and (4) present the first-stage estimations, similar to

that of Table 2, providing evidence that thermal inversion is a valid instrument for PM2.5.

The top half of columns (2) and (4) in Table 3 present the second-stage results revealing

the effects of PM2.5 on firm-product level export value and quantity. We find that a 1%

increase in PM2.5 leads to a decrease of about 0.89% in firm-product level export value,

and a reduction of approximately 1% in firm-product level export quantity. Evaluating

this at the sample mean of PM2.5 concentration (71 µg/m3), we find that, on average, a 1

µg/m3 increase in PM2.5 (i.e., 1.4% increase at the sample mean) results in a reduction of

firm-product level export by about 1.25%. The magnitude of these estimates align with

the findings of Dechezleprêtre et al. (2019), who reported a 0.8% reduction in real GDP in

Europe for each 1 µg/m3 increase in PM2.5 concentrations.

In terms of the aggregate impact of air pollution on Chinese exports, we consider the

average annual export revenue for each firm-product observation in the sample, which

is 629,151 US dollars. A 1% nationwide increase in annual PM2.5 concentration would

reduce export revenue at the firm-product level by approximately $5,596 per year. With

an average of 599,147 different firm-product varieties exported in each year of the sam-

ple, the reduction in annual export revenue amounts to approximately three billion US

dollars. This accounts for about 1.2% and 0.2% of China’s total goods exports in 2000 and

2007 respectively.9

The findings presented in Table 3 also demonstrate a degree of similarity in the impact

9The total value of China’s exports (FoB) was 249,203 million US dollars in 2000, and 1,220,060 million
US dollars in 2007.
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of air pollution on both export value and quantity. The outcomes for unit value, as exhib-

ited in Table 10, however, lack statistical significance. To elaborate, it can be concluded

that air pollution exerts a diminishing influence on export outputs at the firm-product

level, yet fails to induce a corresponding escalation in export prices. Consequently, our

subsequent discourse will be primarily centered around the examination of export values.

5.3 Heterogeneous effect across products with varying labor intensity

Next, we utilize the variation of labor intensity across products to examine whether

the detrimental effects of air pollution on firm exports are stronger for labor-intensive

products. Table 4 reports regression results of equation (14), which includes the inter-

action term of product-level labor intensity with air pollution in the baseline regression,

experimenting with various sets of control variables and fixed effects. Note the labor in-

tensity at HS6 product level is computed as the weighted average of the labor intensity

of firms producing that particular product in 2000, where the baseline measure of labor

intensity is measured by the (log) ratio of employees to real capital. We will show shortly

that the results are robust by using alternative measures.

We first briefly discuss our specifications in Table 4. First, all columns report the IV

estimates, where PM2.5 and its interaction with product labor intensity are instrumented

by the thermal inversion and the corresponding interactions. Second, all columns except

for those with county-year fixed effects control for the same set of weather variables, and

the standard errors are clustered at the county level to account for possible serial correla-

tion within the county. Third, similar to the baseline specification in Table 3, column (1)

includes firm×HS6 and year-fixed effects, while column (2) introduces additional control

variables to capture sector-region factors that may affect export and air pollution. More-

over, columns (3) and (4) adopt county-year fixed effects to account for the unobserved

time-varying county-level factors.

Since labor intensity is demeaned in the interaction term of air pollution and prod-
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uct labor intensity, the coefficient on air pollution captures its effect on firm exports for

products with the average labor intensity, while the interaction term measures the het-

erogeneous effects of air pollution on firm exports across products with varying labor

intensities. Therefore, the coefficients of interest in Table 4 are those of the interaction

terms, which are negative and statistically significant across all columns with different

sets of control variables and fixed effects. It implies that the negative effect of air pollu-

tion on exports is more pronounced for products with relatively higher labor intensity.

The results provide empirical support for model Proposition 1 and demonstrate the het-

erogeneous effects based on the labor intensity of products.

In column (1) of Table 4, the coefficient on PM2.5 is -0.86, indicating that a 1% increase

in PM2.5 concentration leads to a 0.86% reduction in firm-product level exports when the

labor intensity of products is at the sample mean level. This magnitude is consistent with

the overall effect reported in Table 3. Moreover, the negative coefficient on the interaction

term of PM2.5 and labor intensity implies that air pollution has a stronger detrimental

effect on firms’ exports of more labor-intensive products. In particular, for the most labor-

intensive quarter of the products (75th percentile) in the sample, a 1% increase in PM2.5

concentration reduces firm-product level export by approximately 1%, which is 17% more

than the effect for products with labor intensity at the sample mean level. On the other

hand, for the least labor-intensive quarter of the products (25th percentile) in the sample, a

1% increase in PM2.5 concentration decreases firm-product level export by around 0.73%,

which is 14% less than the effect for products with labor intensity at the sample mean

level.10

In column (2) of Table 4, we introduce additional control variables at the sector-region

level to address potential identification concerns related to air pollution-induced migra-

tion and regulatory policies. These controls serve as proxies for labor endowments and

the strength of air pollution-related regulations at the provincial or prefecture level. As

10In Table 4, the sample mean of ln(L/K) is -4.302. While the 75th percentile is -3.754, and the 25th
percentile is -4.775.
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shown, the results are not sensitive to the inclusion of such controls, reflecting the validity

and orthogonality of the instrument. The specific control variables included in column (2)

are as follows: (i) provincial air pollution-related regulation strength,11 (ii) an interaction

term between the strength of provincial level regulation and an indicator for pollution-

intensive industry,12 (iii) the logarithm of prefecture-level population, (iv) provincial non-

college labor share, (v) an interaction term between product labor intensity and variables

related to labor endowments.

In column (3), with product heterogeneity in labor intensity, we can include county×year

fixed effects to account for the possibility of unobserved omitted variable bias arising

from time-varying county-level shocks at the same variation of thermal inversions. This

makes an even tighter identification as it further utilizes the variation of labor inten-

sity across products and captures unobserved county factors. In column (4), we include

county×year fixed effects and the set of sector-region level control variables simultane-

ously. Again, this has little impact on the results. In columns (3) and (4), as the variation of

PM2.5 and its instrument—thermal inversion—is at the county-year level, thus is dropped

due to the inclusion of county×year fixed effects. Our focus in these columns is the coeffi-

cient of the interaction term, which captures the heterogeneous effects of air pollution on

exports based on labor intensity. However, we find that the estimated coefficients of the

interaction terms in columns (3) and (4) are similar to the one in column (1), indicating

that the omitted variables bias from unobserved county-year factors is rather limited.

In columns (5) to (8), we re-estimate the specification in columns (1) to (4) with firm-

11The strength of provincial restrictions on air pollutant emissions is measured by the percentage of air
pollution-related word count in the provincial government work report. We count the number of Chinese
characters that have the English-equivalent meaning of: ”PM10”, ”PM2.5”, ”SO2”, ”CO2”, ”air pollution”,
”air quality”, ”dust”, ”particulate matter”, ”haze”, ”clear sky”. Specifically, in pinyin (Romanized Chinese),
these phrases are: ”er4yang3hua4liu2”, ”er4yang3hua4tan4”, ”kong1qi4wu1ran3”, ”da4qi4wu1ran3”,
”kong1qi4zhi4liang4”, ”yang2chen2”, ”jiang4chen2”, ”ke1li4wu4”, ”kong1qi4”, ”wu4mai2”, ”lan2tian1”.
Then we de-scale the air pollution-related word count by the total words of the provincial government
work report.

12The classification of the pollution-intensive industry is drawn from Mani and Wheeler (1998).
We converted the ISIC2 in the classification into HS 6-digit by concordance provided by WITS at
https://wits.worldbank.org/referencedata.html.
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product level export quantity as the dependent variables. The results are close in magni-

tude and significance level to those of export value. Given the similarity in results and the

focus of our analysis, we focus on the export value for the subsequent analysis by using

alternative measures of product labor intensity.

Alternative measures of labor intensity.— In Table 5, we provide additional regression

results using two alternative measures of product labor intensity: the labor cost share and

the employment share of unskilled workers. We follow the same fixed effects and con-

trol variables combinations as presented in Table 4. The results consistently demonstrate

negative and statistically significant impacts of PM2.5 on firm-product level exports and a

stronger effect for products with higher labor intensity, confirming the pattern observed

in the previous analysis. These findings provide robust evidence that air pollution has a

detrimental effect on firm-product level exports, particularly for labor-intensive products,

regardless of the specific measure used to capture labor intensity.

The first alternative measure of product labor intensity is the weighted average of the

ratio of total labor cost to value-added of all firms producing that product. This mea-

surement has the advantage of directly mapping to the theoretical structural parameter

of labor income share, which is represented by the parameter βs in our theoretical model.

However, to construct this measurement, we need to accurately estimate the value-added

for each firm. In columns (1) to (4) of Table 5, the coefficients of the interaction term of air

pollution and the product’s labor cost share range from -1.05 to -0.84. By plugging these

estimated coefficients into the double partial derivatives in Proposition 1 and assuming a

commonly accepted value of the substitution elasticity σ = 5 from the literature (Costinot

and Rodrı́guez-Clare, 2014), we can calculate the parameter θ that governs the elasticity

of air pollution’s effect on labor productivity. Our estimated values of θ fall within the

range of 0.21 to 0.26, which are comparable to those found in related literature, such as

the study by Fu et al. (2021).

Air pollution can potentially exert disparate impacts on the health and productivity
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of different segments of the labor force, with unskilled labor potentially bearing a dis-

proportionately heavier burden. This could be attributed to their heightened susceptibil-

ity to adverse health effects stemming from greater exposure to air pollutants, owing to

their typically disadvantaged working conditions. Thus, we use the employment share

of workers without a high school degree as the second alternative measurement of prod-

uct labor intensity. The outcomes of the empirical analysis, presented in columns (5) to

(8) of Table 5, underscore the robustness of employing this particular measure of labor

intensity. The results corroborate earlier findings and affirm that the chosen proxy effec-

tively depicts the intricate relationship between labor intensity and its interplay with air

pollution.

5.4 Product scope adjustment

This section characterizes the restructuring of export product scope following air pol-

lution shocks. Our analysis involves two parts. First, at the firm-product level, we inves-

tigate whether exporters are inclined to cease the export of products that are relatively

more labor-intensive compared to other products in the entire product spectrum. Second,

we conduct firm-level estimations to examine whether the product bundle dropped by

the firms exhibits a relatively higher labor intensity compared to the firm’s average labor

intensity.

Firm-product level estimation.—-Table 6 presents the estimated results of firms’ prod-

uct scope adjustment in response to air pollution shocks. The dependent variable of in-

terest is a binary variable that takes the value one if a product is dropped from the export

product scope of the firms, and zero otherwise. The specification in the table is based on

equation (12) and relies on Proposition 2 of the model. We use a linear probability model

to incorporate multiple fixed effects and 2SLS estimation with the instrument variable.

Table 6 presents results from various specifications for robustness. In all columns of

Table 6, as in all results tables, we include firm×HS6 fixed effects to control for any firm-
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product characteristics that may affect the decision to drop a product. In columns (1) and

(2), we use year fixed effects to control for annual shocks. In columns (3) and (4), we

further incorporate county×year fixed effects to account for potential omitted variables

whose variation coincides with air pollution and thermal inversion.

Two different measures of product-level labor intensity are used in the analysis. Columns

(1) and (3) measure labor intensity by the (log) ratio of employees to real capital. Columns

(2) and (4) use the ratio of labor costs to value-added, winsorized to the value of (0.1,0.9).

Labor intensity is demeaned as in the previous estimations. The coefficient on the main

air pollution variable reflects its impact on the likelihood of dropping products with av-

erage labor intensity. The coefficient on the interaction term captures the stronger effect

for labor-intensive products. The regression additionally controls for the relative tenure

and size of firm-HS6 products. The relative tenure of firm-HS6 products measures the

firm’s experience in exporting a particular product relative to the average across firms for

that product. The relative size of the product is the share of the product in the firm’s total

export revenue, which captures the importance of the product to the firm. These relative

terms are computed using log differencing. Similar specifications for examining firms’

product discontinuation decisions can be found in Bernard et al. (2010) as a reference.

The results in Table 6 consistently show that air pollution positively and statistically

significantly affects the subsequent cessation of exports for relatively more labor-intensive

products. In column (1), the coefficient on the interaction term is about 0.03. It implies

that, for the most labor-intensive quarter of the products in the sample, a one standard

deviation increase in annual PM2.5 exposure increases the linear probability of the firm

discontinuing these products by about 0.48% next year.13 The coefficient estimates indi-

cate that air pollution prompts exporters to stop exporting products that are relatively

more labor-intensive compared to other products in the entire product spectrum..

13The 75th percentile of labor intensity ln(L/K) is -3.754. The sample mean ln(L/K) is -4.3. One stan-
dard deviation of PM2.5 is 21.12, accounting for about 29.6% of PM2.5 sample mean. The effect is (-3.754-(-
4.3))*0.03*29.6=0.48%.
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Firm level estimation.—-We investigate whether exporting firms alter their export

product scope through dropping varieties, and how much they shift away from their

previous labor-intensity. We proxy the labor intensity of each HS6 product by the aver-

age labor-to-capital ratio in the logarithm among firms that produce this product, in the

same way as in Section 5.3.

We estimate the firm-level specification using data from 2001 to 2007, controlling for

both firm fixed effects and year fixed effects. We first detect changes in the product scope

across years within firms, and then we explore the direction of changes. The dependent

variable, denoted as ”Any variety dropped”, is a binary variable equal to one if there is

any removal (columns 1-2) from the firm’s export product scope. The other dependent

variable, namely ”More labor-intensive varieties dropped”, is a binary variable that is equal to

one if the dropped group of products has a higher labor intensity than the firm’s average

labor intensity in the previous year (columns 3-4). In other words, it indicates that the

firm’s product scope shifts away from labor-intensive varieties compared with its own

status in the previous year, and focuses more on capital-intensive products. Similar to

previous sections, we estimate the causal effect of ln(PM2.5) using thermal inversions in

the log term as an instrument variable.

Table 7 presents the results. Firms in counties that experience more severe air pollution

are more likely to drop varieties to their exporting product scopes (columns 1-2). Specifi-

cally, a 1% increase in air pollution raises the probability of dropping existing products by

0.47%. These effects are mostly driven by transitions away from products with higher la-

bor intensity (columns 3-4). We provide further results with additional firm-year control

variables, including firm age, total export revenue, and the range of product scope. Our

conclusion remains robust with these alternative specifications: there is an adjustment

of product scope away from labor-intensive goods. Note that our sample in this part is

exclusively composed of the incumbent exporters. Since we do not observe the product

scope of new exporters in trade data before they start exporting, we cannot detect the
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change in firms’ product scope in the first year of exporting and in 2000, which is the first

year of our sample period. Therefore, the estimated coefficients capture the effect on a

firm’s product scope adjustment conditional on firm survival.

5.5 Firm heterogeneity

In this section, we examine Proposition 3 of the extended theoretical model. In this

model extension, we consider the possibility that certain firms may adopt anti-air pollu-

tion technologies to mitigate the detrimental effects of pollution on their workers. These

technologies include air purifiers for indoor workers and anti-particulate masks for out-

door workers. According to Proposition 3, as more productive firms choose to adopt the

anti-pollution technology, the negative effects of air pollution on firms’ exports will be

smaller for more productive or larger firms. However, the customs data does not contain

the information needed to estimate the productivity for exporters. Instead, we use firm

export size to proxy exporters’ productivity levels, as a large literature has documented

that firm size and productivity tend to be positively correlated (Melitz, 2003; Bernard et

al., 2012, etc.). In particular, firm size is measured by a binary variable indicating the rank

of the firms’ export revenue in the current year. We employed sample median and quan-

tiles as thresholds to measure the ranking of the exporter size, which exhibits relatively

stable patterns over the years. In addition, state-owned enterprises and foreign-owned

enterprises may pay more attention to the working environment and thus provide more

protection for workers from air pollution. Thus, we also explore the heterogeneous effects

of air pollution on exports across firm ownerships.

Table 8 presents the findings of heterogeneous effect based on firm size and own-

ership, controlling for the labor intensity of exported goods. In Table 8, the variable

SizeMedian is a binary variable indicating whether the firm size is above the sample

median for the current year. In column (1), when considering exported goods with labor

intensity at the sample mean, the results show that an increase of 1% in air pollution leads
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to a decrease in export revenue of 0.35% for firms with above-median size, and a decrease

of 1.06% for firms with below-median size. This suggests that the adverse impact of air

pollution on above-median-sized exporters is only 33% of that on below-median-sized

exporters.

Column (2) introduces an interaction term between PM2.5 and a dummy variable rep-

resenting private-owned enterprises (POEs).14 The results in column (2) indicate that

the negative effect of air pollution on POEs is statistically stronger than on state-owned

and foreign-owned firms. This stronger adverse effect persists even after controlling for

product-level labor intensity and firm size, suggesting that the working environment or

anti-air-pollution protection measures for workers in POEs may be less favorable com-

pared to those in state-owned and foreign-owned firms.

Columns (3) and (4) of Table 8 use three binary variables indicating the position in

different quantiles of firm size, instead of simply considering above or below the median.

The findings reveal that the top 25% largest firms experience the mildest negative effect

of air pollution, while the top 25% smallest firms encounter the strongest negative effect,

controlling for the labor intensity of their exported products and firm ownership.

5.6 Discussions

Effect on firm entry and exit.— In order to test for the potential sample selection bias

arising from firms’ endogenous location choices based on air pollution, we estimate the

effect of air pollution on firm entry and exit. The results are shown in Table 9. In columns

(1) and (2), we examine the effect of air pollution on firm entry. The dependent variable

Entryft equals one if the firm exports in period t but not in t− 1, and zero otherwise. We

expand the sample to a firm-year balanced panel to estimate the impact on firm entry. In

columns (3) and (4), we investigate the effect of air pollution on firm exit. The dependent

14We note that there is no significant difference between the impact of air pollution on state-owned
enterprises (SOEs) and foreign-owned enterprises (FOEs). Hence, we group SOEs and FOEs together and
introduce an indicator for POEs only.
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variable Exitft equals one if the firm exports in period t− 1, but not in t, and zero other-

wise. These findings reveal no statistically significant influence of air pollution on firm’s

entry or exit.

Effect on quality and price.— Table 10 presents air pollution’s effect on firm-product

export quality and price. We estimate firm-product-level effective quality using an empir-

ical demand equation following methods in (Khandelwal et al., 2013). In columns (1) to

(3), we employ different assumptions on σ to estimate firm-product-level effective qual-

ity. Column (4) presents the results of the quality-adjusted price, which is calculated as

the observed log price minus the estimated effective quality. Additionally, column (5)

presents the results for the unit price. Across all columns, we find no statistically signifi-

cant effects of air pollution on exporters’ product quality or prices.

6 Conclusion

Global climate change and environmental pollution have imposed great challenges

on firms. This paper investigates how air pollution affects Chinese firms’ export perfor-

mance and their comparative advantage in the global market, as well as how exporters

respond to pollution shocks. As air pollution has adverse effects on health conditions and

the productivity of labor, this paper further shows that it also has eroded China’s tradi-

tional comparative advantage in labor-intensive products, by using highly disaggregated

firm-product level trade data and county-level air pollution data. In response to air pol-

lution shocks, exporters also adjust their product scope by discontinuing labor-intensive

varieties and focusing more on capital-intensive products. Moreover, more productive

firms are inclined to invest in technologies that mitigate the impact of pollution, likely

driven by a strategic intent to safeguard their workforce’s well-being amidst polluted

conditions.

The prevailing body of literature concerning the interplay between trade and envi-

37



ronmental regulations predominantly emphasizes the adverse impact of regulatory poli-

cies on trade and overall economic output. In contrast, our study pivots to underscore

the pivotal role of environmental protection policies in stimulating trade, particularly in

economies abundant in labor resources. This is rooted in the recognition that air pollu-

tion operates as a discernible comparative disadvantage for labor-intensive goods. Con-

sequently, our research accentuates the potential of environmental regulations aimed at

enhancing air quality to catalyze the comparative advantage of labor-intensive products

in labor-abundant developing economies.

The implications of our study extend to policy considerations, particularly for de-

veloping nations striving to navigate the delicate equilibrium between bolstering export

growth and ensuring environmental preservation. By spotlighting the potential gains de-

rived from aligning environmental protection measures with trade promotion objectives,

our findings offer valuable insights that could inform the policy discourse in these coun-

tries.
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Figure 1: Time Trend of National Average of PM2.5, Thermal Inversions, and Total Export
Value in China (1995–2010).
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Notes: This figure depicts the national average of PM2.5 and thermal inversions in Panel (a) and export
value and thermal inversions in Panel (b) in each year from 1995 to 2010. Two vertical dash lines highlight
our study period: 2000–2007. PM2.5 is measured in micrograms per cubic meter (µg/m3).
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Figure 2: Within-County Change in Export and Thermal Inversions Between 2000-2007
(Log Difference)
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Notes: This figure illustrates the correlation between the log difference in export value and the number of
annual thermal inversion days for each of the 2,839 counties in China from 2000 to 2007. Each dot represents
a county-level observation.
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Figure 3: Exporters’ Formation of Expectations About Air Pollution

Notes: This figure explains why exporters would react to air pollution induced by transitory shocks such
as thermal inversions. For two distinct counties, the solid dark lines represent air pollution fluctuations
attributed to factors other than thermal inversions, while the solid light lines represent full air pollution
fluctuations. However, exporters can only perceive the effect caused by air pollution regardless of the
sources, which is represented by the light lines. When exporters perceive an air pollution change caused by
a thermal inversion, they will update their expectations as illustrated by dashed lines, even if the change is
transitory in nature.
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Table 1: Summary statistics

Full sample (firm-HS6-year): N=4,552,957

Variables Mean S.D. Min p25 Median p75 Max

Export value (1 USD) 629,151 1.49E+07 124 3,071 16,547 100,302 8.16E+09
Export quantity 757,514 4.68E+07 1 819 5,713 37,680 2.69E+10
Export price (1 USD) 2,223 206,642 7.29E-05 1.03 2.88 8.67 1.40E+08
PM2.5 (µg/m3) 71.27 21.12 3.47 55.17 70.01 86.07 134.80
Thermal inversion (day) 123 59 0 80 121 159 325
ln(employment/real capital) -4.30 0.81 -8.62 -4.78 -4.17 -3.75 -0.62
Labor cost/value added 0.27 0.33 0.00 0.19 0.25 0.32 1.00
Unskill labor share 0.56 0.17 0.00 0.45 0.61 0.69 0.99

Product scope adjustment sample (firm-HS6-year): N=3,350,597

Variables Mean S.D. Median Mean S.D. Median

Drop=1 Drop=0
N=1,415,280 N=1,935,317

Export valuet−1 (1 USD) 92,047 4.90E+06 5,526 998,567 1.67E+07 47,040
Export quantityt−1 113,079 1.16E+07 2,150 1.30E+06 6.09E+07 14,604
PM2.5,t−1 (µg/m3) 67.71 20.09 68.03 68.67 20.01 68.13
Thermal inversiont−1 (day) 122 63 119 126 58 124
ln(employment/real capital) -4.31 0.82 -4.18 -4.28 0.79 -4.16
Labor cost/value added 0.28 0.15 0.25 0.27 0.13 0.25

ASME-exporter sample (firm-year): N=391,024

Variables Mean S.D. Min p25 Median p75 Max

Employment 301 388 10 85 164 347 3,010
Value-added (1000 CNY) 18,073 30,436 103 3,320 7,251 18,248 357,934
ln(value added per worker) 3.85 0.93 -0.96 3.20 3.75 4.41 9.28
PM2.5 (µg/m3) 70.66 20.63 4.31 55.36 69.07 85.64 134.80
Thermal inversion (day) 138 58 0 96 130 170 333

Notes: Each observation is at the firm-HS6-year level in the full sample and product scope adjustment
sample, while at the firm-year level in the ASME-exporters sample. The period for the full sample and
ASME-exporter sample is from 2000 to 2007. The period for the product scope adjustment sample is from
2001 to 2007. Export quantity is measured in consistent units for each firm-HS6 trade flow across years.
Unskilled labor share is measured by the proportion of workers without a high school degree.
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Table 2: The effect of air pollution on exporters’ labor productivity

ln(value added per worker)

OLS IV IV IV

(1) (2) (3) (4)

ln(PM2.5) -0.4059*** -0.9461** -1.1016*** -1.1188***
(0.0960) (0.3854) (0.3543) (0.3107)

ln(PM2.5)×Large Firmoutput 0.3259**
(0.1275)

ln(PM2.5)×Large Firmva 0.2706**
(0.1112)

First stage

ln(TI) 0.0561***
(0.0102)

KP F-statistic 30.41 15.17 15.24

Weather controls + + + +
Firm FE + + + +
Year FE + + + +
Firm size dummy - - + +
R2 0.0099 0.0086 0.0697 0.1842
N 363,627 363,616 363,616 363,616

Notes: The results are estimated based on exporting firms in the ASME database. The
sample period is 2000-2007. Columns 3-4 include both a dummy variable LargeF irms,
and its interaction term with instrumented air pollution. LargeF irms equals one if the
firm size (measured in output or value added) is above the sample median. Robust stan-
dard errors are corrected for clustering at the county level in parentheses. We use ***, **,
and * to denote statistical significance at the 1%, 5%, and 10% level, respectively.
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Table 3: The average effects of air pollution on Chinese firms’ exports

Dependent variable: ln(export value) ln(export quantity)

OLS IV OLS IV

(1) (2) (3) (4)

ln(PM2.5) -0.3909*** -0.8895** -0.3898*** -1.0134**
(0.090) (0.418) (0.086) (0.444)

First stage First stage

ln(TI) 0.0653*** 0.0654***
(0.007) (0.007)

KP F-statistic 87.66 87.75

Weather controls + + + +
Firm×HS6 FE + + + +
Year FE + + + +
R2 0.796 0.001 0.848 0.001
N 3,022,089 3,021,888 3,018,880 3,018,679

Notes: This table reports the average effect of air pollution on firm-product level
export performance. See Section 3 and equation (13) for a description of the IV
specification. The sample period is 2000-2007. The dependent variable is win-
sorized at the 5th percentile. Robust standard errors are corrected for clustering at
the county level in parentheses. We use ***, **, and * to denote statistical signifi-
cance at the 1%, 5%, and 10% level, respectively.
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Table 6: Product scope restructuring: firm-product level estimation

Dependent variable: Indicator of export variety drop

Labor intensity measure: L/K L/Y L/K L/Y

(1) (2) (3) (4)

ln(PM2.5)t−1 -0.2196 -0.1995
(0.189) (0.194)

ln(PM2.5)t−1×Labor intensity 0.0328** 0.1108* 0.0284** 0.0937*
(0.016) (0.058) (0.014) (0.056)

Weather controls + + - -
Firm×HS6 FE + + + +
Year FE + + - -
County×year FE - - + +
KP F-statistic 26.18 26.23 63.17 61.58
R2 0.170 0.169 0.167 0.166
N 2,249,842 2,260,849 2,248,245 2,259,243

Notes: The dependent variable of interest is a binary variable that takes the value one if
the product is dropped from the export product scope of the firms, and zero otherwise.
All columns report the second-stage estimates of 2SLS. L/K denotes the (log) ratio of em-
ployees to real capital. L/Y denotes the ratio of labor costs to value-added, winsorized
to the value of (0.1,0.9). Both labor intensity measures are demeaned as in the previ-
ous estimations. The regression additionally controls for the relative tenure of firm-HS6
products and the (log) share of the product in the firms’ total export revenue. The sample
does not include new entrants. The sample period is 2001-2007. Robust standard errors
are corrected for clustering at the county level in parentheses. We use ***, **, and * to
denote statistical significance at the 1%, 5%, and 10% level, respectively.
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Table 7: Product scope restructuring: firm-level estimation

(1) (2) (3) (4)

Dependent variable: Any variety dropped More labor-intensive varieties dropped

ln(PM2.5)t−1 0.4704*** 0.5088*** 0.2597** 0.2752**
(0.140) (0.147) (0.107) (0.108)

Weather controls + + + +
Firm FE + + + +
Year FE + + + +
Firm-year covariates - + - +
KP F-statistic 76.71 75.74 76.71 75.74
R2 0.000 0.012 0.000 0.004
N 380,106 376,978 380,106 376,978

Notes: This table reports the firm-level estimation results: Yft = β0+β1 lnPMct+ γ′Wct+αf +αt+
εft. All columns report the second-stage estimates of 2SLS. The first-stage coefficients are 0.0651,
with a significance level of 1%. The dependent variables are dummy variables equal to one if any
products are dropped from the firm’s export product scope (columns 1-2), and if the dropped group
of products has a higher labor intensity than the firm’s average labor intensity in the previous year
(columns 3-4). Firms included in the sample are similar to Table 6. Firm-year covariates include firm
age, size (in log), and the range of product scope (in log). Robust standard errors are corrected for
clustering at the county level in parentheses. We use ***, **, and * to denote statistical significance at
the 1%, 5%, and 10% level, respectively.
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Table 8: The heterogeneous effects by firm size and ownership

Dependent variable: ln(export value)

(1) (2) (3) (4)

ln(PM2.5) -1.0604*** -0.9289*** -1.0693*** -0.9805***
(0.327) (0.342) (0.381) (0.379)

ln(PM2.5)×Labor intensity -0.2611*** -0.2572*** -0.2178*** -0.2151***
(0.047) (0.049) (0.040) (0.041)

ln(PM2.5)×SizeMedian 0.7062*** 0.7107***
(0.145) (0.147)

ln(PM2.5)×SizeQ2 0.5623*** 0.5646***
(0.158) (0.159)

ln(PM2.5)×SizeQ3 0.9664*** 0.9711***
(0.281) (0.283)

ln(PM2.5)×SizeQ4 1.1773*** 1.1830***
(0.296) (0.296)

ln(PM2.5)×POE -0.2982** -0.2045*
-0.151 (0.114)

Weather controls + + + +
Corresponding firm size dummy + + + +
Firm×HS6 FE + + + +
Year FE + + + +
KP F-statistic 30.37 23.82 18.32 21.70
R2 0.053 0.053 0.101 0.050
N 3,031,425 3,031,425 3,031,425 3,029,606

Notes: All columns report the second-stage estimates of 2SLS. SizeMedian is a dummy indi-
cating that the firm size is above the sample median for the current year. SizeQ2 indicates
that the firm size is in the second quantile. SizeQ3 indicates that the firm’s size is in the third
quantile. SizeQ4 indicates that the firm’s size is in the fourth quantile. POE indicates private-
owned enterprises. Robust standard errors are corrected for clustering at the county level in
parentheses. We use ***, **, and * to denote statistical significance at the 1%, 5%, and 10%
level, respectively.
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Table 9: The effects on firm entry and exit in foreign markets

Dependent variable: Firm entry Firm exit

(1) (2) (3) (4)

ln(PM2.5)t−1 -0.1659 -0.1762 -0.1146 -0.2279
(0.191) (0.211) (0.133) (0.149)

First stage First stage

ln(TI)t−1 0.0701*** 0.0730*** 0.0647*** 0.0597***
(0.007) (0.008) (0.007) (0.008)

KP F-statistic 104.6 84.11 83.29 58.62

Weather controls + + + +
Firm FE + + + +
Year FE + + + +
Covariates for sensitivity analysis - + - +
R2 0.001 0.001 0.002 0.025
N 727,361 569,007 460,440 425,618

Notes: The dependent variables are dummy variables indicating firm entry and exit. We ex-
clude firms that enter and exit the export market in the same year from the sample. Covari-
ates for sensitivity analysis include firm age (not applicable for entry specification), provin-
cial air pollution-related regulation strength, non-college labor share, and population. Robust
standard errors are corrected for clustering at the county level in parentheses. We use ***, **,
and * to denote statistical significance at the 1%, 5%, and 10% level, respectively.
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Table 10: The effect on estimated quality and price

Dependent variable: ln(export quality) ln(quality-adjusted price) ln(unit price)
σ=σi σ = 5 σ = 10 σ=σi

(1) (2) (3) (4) (5)

ln(PM2.5) -0.4670 -0.1864 0.5979 0.0988 0.1329
(0.502) (0.503) (0.888) (0.417) (0.101)

ln(PM2.5)×Labor intensity -0.0998 -0.1796 -0.0719 0.1031 0.0201
(0.093) (0.113) (0.208) (0.089) (0.020)

Weather controls + + + + +
Firm×HS6 FE + + + + +
Year FE + + + + +
KP F-statistic 45.06 45.06 45.06 43.77 45.72
R2 0.001 0.001 0.002 0.001 0.002
N 3,001,796 3,001,796 3,001,796 2,262,332 3,028,245

Notes: All columns report the second-stage estimates of 2SLS. The dependent variables in columns (1) to (3) are the
estimated (effective) quality at the firm-HS6 level, given different values of the elasticity of substitution (σ) following the
method in Khandelwal et al. (2013). The industry-variant σi is based on Broda and Weinstein (2006). Robust standard
errors are corrected for clustering at the county level in parentheses. We use ***, **, and * to denote statistical significance
at the 1%, 5%, and 10% level, respectively.
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Online Appendix
Not for Publication

A1 Proof of Proposition 3

We assume the genetic value of θ without anti-pollution technology is θN , and firms

that adopt the anti-pollution technology can mitigate the detrimental impact of air pol-

lution on labor productivity and thus have a lower value of θT , i.e., θN > θT . Given this

setting, the relative labor productivity with anti-pollution technology to without anti-

pollution technology AT (Z)/AN(Z) = zθN−θT ≥ 1 for z ≥ 1. This suggests that the anti-

pollution technology in nature can boost labor productivity, particularly when firms are

facing severe air pollution.

The expression for the firm-level profit of not adopting anti-pollution technology can

be rewritten in πN(φ) as follows:

πN(φ) = πH
N (φ) + πF

N(φ)

=

∫ 1

0

[∫ λ̄

λH∗
s,N

πH
s,N

(
φ, λH

s

)
· h (λs) dλs

]
ds+

∫ 1

0

[∫ λ̄

λF∗
s,N

πF
s,N

(
φ, λF

s

)
· h (λs) dλs

]
ds

=

∫ 1

0

∫ λ̄

λH∗
s,N

RH
s ·

(
ρPH

s λH
s · φ(

w
αz−θN

)βs

)σ−1

− fs

 · h (λs) dλs

 ds

+

∫ 1

0

∫ λ̄

λF∗
s,N

RF
s ·

(
ρP F

s λF
s · φ

τ ·
(

w
αz−θN

)βs

)σ−1

− Fs

 · h (λs) dλs

 ds

Note that fs is the fixed cost of production for product s, measured as units of the

numeraire. Firms must pay a fixed cost of Fs (measured as units of the numeraire) to

serve the foreign market.

The expression for the firm-level profit of adopting anti-pollution technology can be

1



rewritten in πT (φ) as follows:

πT (φ) = πH
T (φ) + πF

T (φ)− fT

=

∫ 1

0

[∫ λ̄

λH∗
s,T

πH
s,T

(
φ, λH

s

)
· h (λs) dλs

]
ds+

∫ 1

0

[∫ λ̄

λF∗
s,T

πF
s,T

(
φ, λF

s

)
· h (λs) dλs

]
ds− fT

=

∫ 1

0

∫ λ̄

λH∗
s,T

RH
s ·

(
ρPH

s λH
s · φ(

w
αz−θT

)βs

)σ−1

− fs

 · h (λs) dλs

 ds

+

∫ 1

0

∫ λ̄

λF∗
s,T

RF
s ·

(
ρP F

s λF
s · φ

τ ·
(

w
αz−θT

)βs

)σ−1

− Fs

 · h (λs) dλs

 ds

− fT ,

where fT is a fixed cost paid by firms (measured as units of the numeraire) to adopt

the anti-pollution technology, which better protects their workers from air pollution to

mitigate the negative effect on labor productivity.

πN(φ) and πT (φ) can be illustrated by Figure A1. In order to prove Proposition 3,

we need to prove that there exists an anti-pollution technology adoption cutoff φ∗
T such

that for firms with productivity higher than the tech-adoption cutoff (i.e., φ > φ∗
T ), firms’

expected profit of adopting technology will be larger than firms’ expected profit of not

adopting such technology (i.e. πT (φ) > πN(φ)). On the other side, for firms with produc-

tivity lower than the tech-adoption cutoff (i.e., φ ≤ φ∗
T ), firms’ expected profit of adopting

technology will be smaller than firms’ expected profit of not adopting such technology

(i.e., πT (φ) ≤ πN(φ)). In other words, for firms with higher productivity, firms choose

to pay the fixed cost to adopt anti-pollution technology. For firms with lower productiv-

ity, they choose not to. In this way, firms with higher productivity suffer less from air

pollution.

As illustrated by Figure A1, we show that: (1) the intercept of πT (φ) is strictly smaller

than the intercept of πN(φ). And both of them are negative; (2) the slope of πN(φ) is

strictly smaller than πT (φ). When both (1) and (2) are satisfied, there must exist a φ∗
T such

that for φ > φ∗
T , πT (φ) > πN(φ), and for φ ≤ φ∗

T , πT (φ) ≤ πN(φ).
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Figure A1: Illustration for the proof of the existence of φ∗
T

Notes: This figure illustrates firm-level profit of not adopting anti-pollution technology πN (φ) and adopting
anti-pollution technology πT (φ).

The intercept of πN(φ) = −
∫ 1

0

fs ·
(
1−H

(
λH∗

s,N

))
ds−

∫ 1

0

Fs ·
(
1−H

(
λF ∗

s,N

))
ds

The intercept of πT (φ) = −
∫ 1

0

fs ·
(
1−H

(
λH∗

s,T

))
ds−

∫ 1

0

Fs ·
(
1−H

(
λF ∗

s,T

))
ds− fT

The first term in the above two equations is the aggregation of fixed production costs

fs for all varieties produced. The second term is the aggregation of fixed export cost Fs

for all varieties exported, for not adopting (N) and adopting anti-pollution technology

(T), respectively.

Given θN > θT , i.e., the relative labor productivity with anti-pollution technology

is higher than or equal to that of without anti-pollution technology AT (Z)/AN(Z) =

zθN−θT ≥ 1 for z ≥ 1, we have:
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λH∗

s,T ≤ λH∗

s,N , and 1−H
(
λH∗

s,T

)
≥ 1−H

(
λH∗

s,N

)

λF ∗

s,T ≤ λF ∗

s,N , and 1−H
(
λF ∗

s,T

)
≥ 1−H

(
λF ∗

s,N

)
To put it in words, firms’ product scope for both domestic and foreign markets is larger

if they adopt anti-pollution technology. Therefore, given fT > 0, the intercept of πT (φ) is

strictly smaller than the intercept of πN(φ).

Then we show that for each product s, the slope of πs,T (φ) is strictly smaller than the

slope of πs,N(φ).

The slope of πN(φ) =

∫ 1

0

∫ λ̄

λH∗
s,N

RH
s ·

(
ρPH

s λH
s(

w
αz−θN

)βs

)σ−1
 · h (λs) dλs

 ds

+

∫ 1

0

∫ λ̄

λF∗
s,N

RF
s ·

(
ρP F

s λF
s

τ ·
(

w
αz−θN

)βs

)σ−1
 · h (λs) dλs

 ds

=

∫ 1

0

RH
s ·

(
ρPH

s(
w

αz−θN

)βs

)σ−1

·
∫ λ̄

λH∗
s,N

(
λH
s

)σ−1
h (λs) dλs

 ds

+

∫ 1

0

RF
s ·

(
ρP F

s

τ ·
(

w
αz−θN

)βs

)σ−1

·
∫ λ̄

λF∗
s,N

(
λF
s

)σ−1
h (λs) dλs

 ds

The slope of πT (φ) =

∫ 1

0

∫ λ̄

λH∗
s,T

RH
s ·

(
ρPH

s λH
s(

w
αz−θT

)βs

)σ−1
 · h (λs) dλs

 ds

+

∫ 1

0

∫ λ̄

λF∗
s,T

RF
s ·

(
ρP F

s λF
s

τ ·
(

w
αz−θT

)βs

)σ−1
 · h (λs) dλs

 ds

=

∫ 1

0

RH
s ·

(
ρPH

s(
w

αz−θT

)βs

)σ−1

·
∫ λ̄

λH∗
s,T

(
λH
s

)σ−1
h (λs) dλs

 ds

+

∫ 1

0

RF
s ·

(
ρP F

s

τ ·
(

w
αz−θT

)βs

)σ−1

·
∫ λ̄

λF∗
s,T

(
λF
s

)σ−1
h (λs) dλs

 ds
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Note that each firm draws a set of “consumer taste” attributes for each potential prod-

uct produced, λs ∈ [0,∞) from a Pareto distribution H(λs). The set of λs is firm-product

specific and is constant across countries. The shape parameter of Pareto distribution

H(λs) is γ, and γ > σ − 1.1 Therefore, the slopes of πN(φ) and πT (φ) can be rewritten

as follows:

The slope of πN(φ) =

∫ 1

0

RH
s ·

(
ρPH

s(
w

αz−θN

)βs

)σ−1

·
γ ·
(
λH∗
s,N

)−γ+σ−1

γ − (σ − 1)

 ds

+

∫ 1

0

RF
s ·

(
ρP F

s

τ ·
(

w
αz−θN

)βs

)σ−1

·
γ ·
(
λF ∗
s,N

)−γ+σ−1

γ − (σ − 1)

 ds

The slope of πT (φ) =

∫ 1

0

RH
s ·

(
ρPH

s(
w

αz−θT

)βs

)σ−1

·
γ ·
(
λH∗
s,T

)−γ+σ−1

γ − (σ − 1)

 ds

+

∫ 1

0

RF
s ·

(
ρP F

s

τ ·
(

w
αz−θT

)βs

)σ−1

·
γ ·
(
λF ∗
s,T

)−γ+σ−1

γ − (σ − 1)

 ds

Given θT < θN , we have λH∗
s,T ≤ λH∗

s,N , and λF ∗
s,T ≤ λF ∗

s,N . Therefore, the slope of πN(φ) is

strictly smaller than πT (φ).

As illustrated by Figure A1, we have shown: (1) The intercept of πT (φ) is strictly

smaller than the intercept of πN(φ). And both of them are negative; (2) The slope of πN(φ)

is strictly smaller than πT (φ). Therefore, there must exists a φ∗
T such that for φ > φ∗

T ,

πT (φ) > πN(φ), and for φ ≤ φ∗
T , πT (φ) ≤ πN(φ).

1γ > σ − 1 ensures a positively sloped profit function of firms’ productivity.
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Table A2: Statistics on firms that have relocated in the sample period

Number of distinct counties Number of Share among Number of Share among
each firms have located in firms all firms f-h-t observations all f-h-t observations

1 255017 91.09% 11661239 86.85%
2 23957 8.56% 1683131 12.53%
3 960 0.34% 78224 0.58%
4 19 0.01% 4904 0.04%

Number of distinct prefectures Number of Share among Number of Share among
each firms have located in firms all firms f-h-t observations all f-h-t observations

1 274293 97.98% 13215785 98.42%
2 5650 2.02% 211652 1.58%
3 10 0.00% 61 0.00%

Notes: Each observation in the data is at the firm-HS6 product-year level. The sample period is from 2000 to 2007.
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