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A B S T R A C T

Causal evidence for adaptation effects of specific agricultural instruments is scant but important for identifying
potentially useful adaptive measures for climate change in the future. To address this gap, we leverage quasi-
experimental variations in irrigation induced by a natural experiment for irrigation expansion started in 1996
and quantify the contribution of irrigation access to the overall adaptation effect. There are three primary
findings. First, using a period-specific panel fixed effect model, the analysis shows a significant decline in
the temperature-related yield loss in the post-1996 period compared to before, indicating a substantial overall
adaptation effect. Second, estimation of marginal adaptation effects of inputs points to irrigation as the central
input for adaptation among the inputs observed in the data. Third, using a difference-in-differences approach
united with the panel methodology for identifying temperature effects, we show that the presence of the
irrigation expansion experiment significantly mitigated the high temperature impacts on crop yields, with
increased irrigation through the natural experiment accounting for about 40% of the overall adaptation effect.
1. Introduction

The agriculture sector is highly vulnerable to the impacts of climate
change. Understanding how specific adaptation measures can moderate
these impacts on agricultural production is crucial for identifying
solutions to the risks posed by climate change and designing effective
policies to facilitate adaptation to climate change. While considerable
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attention has been given to estimating overall adaptation effect (e.g.,
Mendelsohn et al., 1994; Burke and Emerick, 2016; Chen and Gong,
2021; Heutel et al., 2021), relatively fewer efforts have been made
to comprehend how the use of particular adaptation measures can
mitigate the effects of climate change in the agricultural sector.2
For example, Chen and Gong (2021) demonstrate substantial overall
adaptation effects on agricultural output using the long-difference
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approach but do not estimate the adaptation effect of each potential
channel.

To address this gap, we adopt a causal framework to identify the
adaptation effect of a specific instrument using a panel fixed effect
approach and quantify its contribution to the overall adaptation effect.
Specifically, we causally identify the adaptation effect of irrigation by
investigating whether increased access to irrigation through a nation-
wide project in China aimed at expanding irrigation can mitigate the
high temperature effect on crop yields.

In 1996, the Central Rural Work Conference, organized by the
central government, decided to provide subsidized loans annually to
support irrigation expansion and explicitly stated the establishment
of 300 piloting counties for irrigation construction (The State Council
of China, 1996a). The irrigation expansion project was initiated as a
complementary policy endeavor during a period when several concur-
rent agricultural support policies were formulated to attain a goal of
achieving food self-sufficiency objective. In the same year, the Chinese
government established a goal of achieving grain self-sufficiency, with
the aim of fulfilling a minimum of 95% of domestic consumption for
several crops such as rice, wheat, corn, coarse grains, soybeans, and
potatoes through domestic production (The State Council of China,
1996b). Alongside other articulated agricultural modernization poli-
cies, the irrigation expansion project has enhanced the adoption of
contemporary agricultural practices, potentially bolstering adaptive
capacity (Hyde and Syed, 2014).

Utilizing thirty years of county-level agricultural production data
(1981–2010) and fine-scale meteorological data, this paper presents the
first large-scale causal evidence on a specific adaptation mechanism
in the agriculture sector of the world’s most populous country. In
accordance with the grain self-sufficiency objective, which establishes
self-sufficiency targets for specific crops, our analysis centers around
the adaptive capacity of crop yields. Our primary attention is directed
towards corn and soybeans, two pivotal grain crops on a national scale,
collectively occupying over 20% of China’s cropland. These crops hold
significant importance as essential resources for producing edible oils
and livestock feed. Within the grain category, our focus on studying
the climate sensitivities of corn and soybeans as opposed to wheat
and rice, is based on the consideration that corn and soybeans exhibit
better geographical representativeness. Corn and soybeans are dis-
tributed throughout China, whereas wheat and rice are more regionally
concentrated—wheat in the north and rice in the south.

The empirical analysis is divided into three parts. In the first part,
we establish a period-specific panel fixed effect model that examines
the change in the temperature-yield relationship around the year for the
irrigation project implementation to estimate the overall adaptation ef-
fect. The analysis shows a significant decline in the temperature-related
yield loss in the post-1996 period compared to before, indicating a
substantial overall adaptation effect. We find the impacts of 100-day
exposure to extreme high temperatures (measured by degree days
above an endogenously-selected temperature threshold–28 ◦C for corn
nd 26 ◦C for soybean) on corn and soybean yields in 1996 to 2010 is
0% to 50% less than that in the period of 1981 to 1995. This results in
loss reduction by about 14.5% of the national corn production (16.2
illion tons) and 7% of national soybean production (1.1 million tons)

ompared to the scenario in which the pre-1996 extreme temperature
mpacts on crop yields prevailed.

The second part of the analysis aims to uncover adaptive instru-
ents by estimating the marginal adaptation effects of various agricul-

ural inputs, including irrigation, fertilizer, machinery, and electricity.
e estimate an augmented panel model with temperature-input inter-

ctions where inputs are interacted with all the temperature variables.
rovince-by-year fixed effects and county-specific time trends are con-
rolled for so that the biases generated by factors confounding with
daptive inputs cannot occur through province-by-year differences or
ounty-specific gradual changes that may affect crop yields. The results
2

ighlight irrigation as the only effective input for adaptation. Increasing t
irrigation coverage from 0% to 100% is associated with a significant re-
duction in temperature-related yield loss by 25 to 28 percentage points
(13 to 15 percentage points) percentage points for corn (soybean),
whereas the use of fertilizer, agricultural machinery, and electricity
does not show statistically significant reductions in heat-related yield
losses.

To lend credibility to the OLS estimation regarding adaptation
effects of inputs in the second part, we identify the adaptation ef-
fect of irrigation using quasi-experimental variations induced by the
irrigation expansion project. This consists of the third part of our
empirical analysis. We first estimate the treatment effect of the project
on access to irrigation using a Difference-in-Differences (DID) model,
confirming a strong and causal relationship between the project and
irrigation coverage. The irrigation project has led to approximately 7
percentage-point increase in irrigation coverage.

We then construct a two-way fixed effect model with interactions
between temperatures and the project implementation to estimate the
effect of access to irrigation via the irrigation expansion project on
the temperature-yield relationship. The interaction model employs two
sources of exogenous variations—the irrigation project treatment and
temperature. Conceptually, it unites the difference-in-differences ap-
proach with the panel-fixed effects methodology that has been widely
used to identify causal impacts of temperatures on a variety of out-
comes including those within the agricultural sphere (Deschênes and
Greenstone, 2007; Zhang et al., 2017). It compares within-county tem-
perature effects before and after the irrigation expansion project was
implemented. If no other adaptive inputs change at the same time as
the project treatment changes, this will identify the causal effect of the
irrigation project on the temperature-yield relationship. The analysis
reveals that the presence of the irrigation project significantly mitigated
the high temperature impacts on crop yields by approximately 4.5 per-
centage points, with project-induced irrigation expansion accounting
for about 40% of the overall adaptation effect.

This paper contributes to an active literature on adaptation to
climate change in two major aspects. Firstly, it contributes to the
literature on estimating the overall adaptation effects that has been con-
ducted with two approaches recently (Shrader, 2021). Following Dell
et al. (2009), the first approach compares responses of outcome vari-
ables to high-frequency weather variation (e.g., year-to-year variation)
with those to low-frequency weather variation (e.g., decade-to-decade
variation or cross-sectional weather average).3 The most recent de-
velopment of the first approach compares panel estimates with long-
difference estimates to quantify adaptation effects (Burke and Emerick,
2016; Chen and Gong, 2021). The second approach is comparing
estimates derived from high-frequency variation in weather realization
across subsamples with different characteristics (e.g., cooler versus
hotter areas or earlier versus later period) (Barreca et al., 2016; Taraz,
2018; Heutel et al., 2021; Auffhammer, 2022). There have been at-
tempts to quantify agricultural adaptation in the U.S. by examining
evolution of agricultural sensitivities to extreme high temperatures over
time but little evidence of decline in temperature sensitivity has been
found (Schlenker and Roberts, 2009; Roberts and Schlenker, 2011;
Bleakley and Hong, 2017; Ortiz-Bobea et al., 2018).4

3 The idea is that high-frequency variation in weather identifies without-
daptation effects of climate change (direct effects) while low-frequency
ariation in weather identifies with-adaptation effects (a combination of direct
ffects and adaptation effects) (Shrader, 2021). Therefore, the difference be-
ween the two can be used to estimate adaptation effects. The recent literature
sing this approach includes Dell et al. (2009, 2012), Butler and Huybers
2013), Schlenker et al. (2013), Moore and Lobell (2014), Burke and Emerick
2016), Bento et al. (2020), and Chen and Gong (2021).

4 Bleakley and Hong (2017) is an exception among the literature investigat-
ng temporal evolution of temperature impacts. It documents the temperature
ensitivity of farm value in the US of the 20th century was significantly lower

han that in the 19th century but does not show how the farm value had
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We employed a period-specific panel fixed effect model which is
an application of the second approach for overall adaptation effect
estimation, to examine the temporal evolution of the temperature-yield
relationship in the world’s most populous country. The analysis pro-
vides evidence of a significant decline in extreme temperature impacts
on yields that is larger than those found in the literature. The temporal
progression of temperature effects implies that estimates pertaining to
temperature impacts in preceding periods could inaccurately represent
the effects in the future.

Unlike alternative empirical strategies that estimate overall adapta-
tion effect by comparing responses to high- and low-frequency weather
variation, particularly the long difference approach, our panel approach
achieves causal identification of the adaptation effect of particular
adaptive instruments. The identification strategy hinges on spatial vari-
ation in the temporal change of the temperature and adaptive instru-
ment treatments assigned by a natural experiment while controlling
for time-invariant unobservables correlated with the outcome through
spatial fixed effects. This distinction is caused by the potential correla-
tion between low-frequency weather variations and economic factors
that influence the overall adaptive capacity. Chen and Gong (2021)
find that long-difference estimates of agricultural inputs and total factor
productivity (TFP) are less sensitive to high temperatures compared to
panel estimates, which serves as a suggestive mechanism for the overall
adaptation in agricultural production. However, they do not estimate
the adaptation effect through each channel nor quantify the extent to
which input and TFP adjustments contribute to the overall adaptation
effect. Lack of knowledge on adaptation benefits of input adjustments
prevents policy makers from identifying effective adaptation strategies.

Secondly, this paper contributes to the literature on specific adapta-
tion strategies. An emerging literature has focused on farmers’ adjust-
ments of behaviors in response to temperature shocks or change of cli-
matic normals including within-season variable input adjustments (Jag-
nani et al., 2020; Aragón et al., 2021), growing season adjustments (Cui
and Xie, 2021), cropland reallocation (Costinot et al., 2016; Cui, 2020;
Cui and Zhong, 2023), risk-buffering and financing behaviors (Cui and
Tang, 2023) as well as energy use (Auffhammer, 2022). But these
studies lack formal evaluations on the extent to which those adapta-
tion measures moderate the extreme temperature impacts.5 The main
challenge for evaluating the effectiveness of adaption measures is the
endogeneity of specific measures. This paper adds to the literature by
identifying the causal adaptation effect of a specific instrument using its
uasi-experimental variations and quantify its contribution to the overall
daptation effect.

In particular, our paper contributes to the literature on the role of
rrigation in adapting to climate change. While Hornbeck and Keskin
2014) evaluate the effect of groundwater on drought sensitivity by
xploiting local exogenous variation in access to new groundwater
quifer, to our best knowledge, our paper is the first to use a nationwide
atural experiment in access to irrigation to address the endogeneity
ssue of irrigation. Other relevant studies estimate the heterogeneous
emperature or precipitation impacts by the level of irrigation coverage
nd find that lower climate sensitivity for irrigated areas (Fishman,
018; Tack et al., 2017; Zaveri and Lobell, 2019). But they cannot rule

evolved since the 20th century while others studying the same topic only
focus on the temporal evolution of extreme temperature effects since the 20th
century.

5 Earlier relevant studies quantified how farmers adapt to their current
climate by comparing choices of inputs and farming methods in one climate
zone versus another (Kurukulasuriya and Mendelsohn, 2008c,a,b; Wang et al.,
2010; Haigh et al., 2015; Huang et al., 2015) and factors that impact farmers’
adaptation decisions (Bryan et al., 2009; Di Falco et al., 2011; Di Falco and
Veronesi, 2013; Di Falco, 2014). The estimation in this thread of literature is
mainly derived from cross-sectional variation in average weather, which is the
3

major difference from the most recent emerging literature.
out confounding factors for irrigation without exogenous variations in
irrigation.

The remainder of the paper is organized as follows. Section 2 out-
lines a conceptual framework explaining how the temperature effects
depend on use of adaptive inputs. Section 3 introduces the background
for the irrigation expansion project. Section 4 describes the data sources
and reports the summary statistics. Section 5 presents the econometric
strategies. Section 6 reports the results from fitting the models in
Section 5. Section 7 concludes.

2. Conceptual framework

The conceptual framework illustrates the identification strategies
for the overall adaptation effect and marginal adaptation effects of
adaptive inputs (i.e., agricultural inputs) by introducing how the im-
pacts of high temperatures on crop yields depend on adjustments of
inputs. Suppose that the yield of a crop is a function of temperature 𝑇
and a vector of adaptive inputs 𝐱 = (𝑥1,… , 𝑥𝑛), which can be expressed
in Eq. (1)

𝑦 = 𝐹 (𝑇 , 𝐱), (1)

where 𝑦 is the yield of a crop. High temperature shocks generate
negative impacts on crop yields, i.e., 𝐹𝑇 = 𝜕𝐹 (𝑇 ,𝐱)

𝜕𝑇 < 0, but the negative
high temperature impacts can be moderated by the adaptive inputs
such that for an arbitrary input 𝑥𝑖, 𝐹𝑇𝑥𝑖 = 𝜕𝐹 2∕𝜕𝑇 𝜕𝑥𝑖 > 0. So, the
adaptation effect, which is the total change in the temperature-yield
relationship 𝐹𝑇 due to use of adaptive inputs can be expressed by total
differentiating the high temperature effect 𝐹𝑇 in Eq. (2):

𝐹𝑇 = 𝐹𝑇𝑥1𝑑𝑥1 +⋯ + 𝐹𝑇𝑥𝑛𝑑𝑥𝑛. (2)

We need to estimate the overall adaptation effect which is the change
in the temperature-yield relationship as denoted by 𝑑𝐹𝑇 and identify
the adaptation effect through using some specific adaptive instrument
as denoted by 𝐹𝑇𝑥𝑖𝑑𝑥𝑖. To be cohesive with the exogenous change in
irrigation due to the natural experiment, the overall adaptation effect
can be identified by comparing the high temperature effect before the
occurrence of the experiment with after. Based on Eq. (2), specific
instruments take into effect in terms of mitigating high temperature
impacts either through change in quantities of adaptive inputs or
through changes in marginal adaptation effects which may be related to
technology advancement. Because we only observe agricultural inputs
rather than technology advancements in the data, this study can only
estimate the adaptation effect through the mechanism of quantity
changes in inputs. The assumption for the approach of comparing the
high temperature effects between different policy regimes is that the
marginal adaptation effect of each input remains stable. We use a model
specification of province-by-year fixed effects and county-specific time
trends to account for the temporal change in technology that may affect
the marginal adaptation effects of inputs over time whereby we can
disentangle the mechanism of changes in marginal adaptation effects
from the mechanism of changes in inputs quantities to some degree.

Fig. 1 illustrates the empirical strategy of estimating the overall
adaptation effect by depicting the evolution of temperature-yield rela-
tionship over time periods. This relationship is modeled as an inverted
‘‘U’’ shaped parabola because the literature has documented the nonlin-
ear effects of temperature on crop yields (Schlenker and Roberts, 2009;
Lobell et al., 2013). The steeper parabola denotes the temperature-
yield relation in Period 1 and the flatter one denotes the relation in
Period 2. In Period 1, an unanticipated increase of temperature from
the yield-maximizing 𝑇0 to 𝑇1 generates yield loss measured by 𝐴𝐵 =
𝑌0 − 𝑌1. If farmers have more access to adaptive inputs in Period 2,
the yield loss caused by the same temperature increase reduces to
𝐴𝐶 = 𝑌0 − 𝑌2. The adaptation benefit is 𝐵𝐶 = 𝑌2 − 𝑌1, which represents
the reduction in temperature-related yield loss due to increased use of
adaptive inputs. The evolutionary effects of high temperatures on crop
yields can be estimated by a period-specific panel fixed effect model
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Fig. 1. Crop yields of two periods as a function of temperature.

following the empirical strategy by Barreca et al. (2016). The period-
specific coefficients for the high temperature variable in the regression
model estimate |𝐴𝐵|

|𝑇1−𝑇0|
and |𝐴𝐶|

|𝑇1−𝑇0|
.

The goal of this paper is to identify the marginal adaptation benefits
of adaptive inputs, i.e., 𝐹𝑇𝑥𝑖 > 0 and to quantify their individual contri-
butions to the overall adaptation effect. The identification relies on the
assumption that no other factors that are relevant to the investigated
adaptive input covary with the input. An agricultural policy that assigns
some places with resources to promote use of the investigated input
while leave other places unaffected can provide quasi-experimental
variations in the adaptive input. An extensive assumption from above
is that the project treatment is independent of temperature shocks that
may induce use of other adaptive inputs. In presence of a natural
experiment that changes access to a specific adaptive instrument, the
goal can be accomplished by a difference-in-differences approach that
disentangles variations of the investigated input from variations of
confounding factors.

This study is focused on within-crop adaptation. The conceptual
framework relies on a single-crop production function holding across
time such that the production function changes only via changes in non-
crop inputs. The channel of adaptation via crop switching is assumed
away from this analytical framework. However, crop substitution as re-
sponses to high temperature shocks may be constrained by inconsistent
growing seasons of crops for substitution and market distortions that
weaken the incentives of crop production in areas that are most suited
to the new economic environment. We will examine how crop mixture
in terms of planted area respond to high temperature shocks within
growing season in Section 5 to verify the assumption for framing.

3. Background of agricultural policies used for the identification
strategy

Agricultural policies that stimulate investments on agricultural in-
puts can modify the temperature-yield relationship. Policy implemen-
tation marks the starting point of the change in high temperature
effects on crop yields and provides quasi-experimental variations in
relevant adaptive inputs for identifying adaptation effect via the rel-
evant input. In 1996, the Chinese government set an objective for
grain self-sufficiency, aiming to satisfy a minimum of 95% of domestic
consumption of rice, wheat, corn, coarse grains, soybeans and potatoes
through domestic production (The State Council of China, 1996b;
Hyde and Syed, 2014). This state objective stems from the Chinese
government’s view that China’s food security is best maintained by
meeting its domestic food demand with domestically produced food.
Instead of incentivizing crop substitution as response to environmental
change, the self-sufficiency objective strengthens production of indi-
vidual crops (Clapp, 2017). The self-sufficiency objective is supported
4

by agricultural subsidies to improve uptake of modern agricultural
practices, thereby providing farmers with an incentive to adopt capital-
intensive inputs (OECD, 2013).6 Other subsidies known as awards are
paid directly to county governments in areas that have high grain
production. These subsidies are aimed to encourage public investment
in both infrastructure and research to support production (Gale, 2013).

Policies to promote expansion of concrete agricultural inputs come
along with the objective change. In the same year of 1996, the Central
Rural Work Conference held by the central government decided that
the government would allocate subsidized loans annually to support
irrigation expansion (The State Council of China, 1996a). It explicitly
stated that in 1996, 300 pilot counties for irrigation construction would
be established nationwide. Each key county was required to add an area
of over 100,000 mu (about 6667 hectares) for irrigation. Practical and
feasible development plans should be formulated for constructing the
300 key counties. The irrigation plans for key counties should include
water delivery, on-field measures, and water use management. The
choice of irrigation methods should be tailored to local conditions and
scientifically reasonable, with efforts to expand irrigation coverage.

Fig. 2 depicts the time trends of irrigation coverage for the counties
treated by the irrigation expansion project (treatment group) and coun-
ties that are not affected by the project (control group). Among counties
which plant corn or soybean intensively, the treatment group and the
control group show similar trends before 1996, the year of project
implementation. But they diverge significantly after 2003, when the
growth of irrigation coverage in the control group lagged behind that in
treated counties. Fig. 2 illustrates the validity of the empirical strategy
of using the quasi-experimental variation in irrigation to identify its
marginal adaptation benefit.

4. Data sources and summary statistics

4.1. Data sources

Agricultural production data. We use an unbalanced county-level
panel data on Chinese agriculture from 1981 to 2010. The data comes
from the county-level database collected by the Department of Planting
Management, the Ministry of Agriculture and Rural Affairs of China.
The data was aggregated from surveys about farmers’ agricultural
production activities in local counties. Observations on the Xizang
Autonomous Region (Tibet) and Qinghai Province are very limited as
the two provinces are located on the Qinghai–Tibet Plateau with an
average elevation of over 4000 m where agricultural activities are not
intensive. The agricultural data set provides data on total outputs and
planted area of four major grain crops—wheat, rice, corn, and soybeans
as well as the total outputs and total planted area of the whole grain
category. It also provides data on agricultural inputs that may moderate
high temperature effects. These inputs include the effectively irrigated
arable land, agricultural machinery power, aggregate labors (number of
labors employed in the crop farming, forestry, husbandry, and fishery
sector as a whole), fertilizer, and electricity in each county’s rural area.
However, we cannot observe agricultural inputs for each crop.

We choose to study corn and soybeans as the major subjects in this
paper for two reasons. First, corn and soybean have better represen-
tativeness in terms of geographical distribution than wheat and rice.

6 An example is the ‘‘One Exemption and Three’’ policy. ‘‘One Exemption’’
refers to the exemption of agricultural taxes. ‘‘Three Subsidies’’ refers to
subsidies to farmers based on individual’s total planted area to increase
their income, subsidies for high-quality seed varieties and subsidies for the
purchase of mechanized agricultural inputs. The adaptation effect of adopting
heat-resilient seed varieties cannot be explicitly investigated because of data
limitations. Hence, we use province-year fixed effects and county-specific
quadratic time trends in the panel model to account for the changes in crop
yields that may confound with the adaptation effects of investigated inputs
such as irrigation.
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Fig. 2. The time trends of irrigation coverage: treated counties versus control counties.
Notes: Data is missing for counties that never planted corn or soybean from 1981 to 2010. Counties that did not plant corn during the period from 1981 to 2010 have been
removed from the sample, leaving a total of 2301 counties that are referred to ‘‘corn sample’’. Similarly, ‘‘soybean sample’’, which follow the same criteria, are composed of 2194
counties. 295 out of the 300 treated counties as the pilots for irrigation expansion can be observed in our data (the rest 5 treated are state-owned farms which cannot be observed
in the agricultural data). The irrigation coverage is the percentage of arable land that is effectively irrigated (effectively irrigated area over total arable land area).
Corn and soybean in China are distributed all over the country but other
grain crops such as wheat and rice are regional crops—wheat is concen-
trated in northern China while rice is concentrated in the south. Second,
the yields within the growing season for multiple-season crops like
rice is hard to be measured accurately (Zhang et al., 2017). In China,
the rice can be classified as single-season rice and multiple-season rice
(including early rice and late rice) in terms of cropping system. But the
data only provides aggregate output and planted area for the whole
year without specifying the counterparts for each season. We are not
able to measure yields of early rice and late rice accurately. Using the
aggregate output for multiple seasons can only estimate an average
of temperature sensitivities of all seasons. The temperature sensitivity
of the aggregate rice output may be compromised by the temperature
sensitivities of rice planted in different seasons with opposite signs.
Studies on wheat and rice will be used as supporting evidence to show
whether the temporal evolution of temperature-yield relationship in
corn and soybeans can be extended to the overall cropping sector of
agriculture.

Crop region division and growing season. Corn and soybeans are
planted across China but they differ in variety and growing season
by region because of spatially varying climatic conditions. Liu (1993)
provides us with the division of the corn and soybean regions and
corresponding growing seasons, as illustrated in Figure A.1 and A.2 in
Appendix A.1, respectively. Corn and soybeans in China can be catego-
rized by season (Chen et al., 2016). Spring corn and soybeans, typically
planted in April and harvested in late September, are concentrated
in the northeast, northwest inland areas, and southwest mountainous
areas. Summer corn and soybeans are grown in June and have a
slightly shorter growing season than spring corn does and are primarily
produced in the Huang-Huai-Hai (HHH) Plain area. Autumn corn and
soybeans are mainly planted in the mountainous areas of the south
and southwest regions. A small amount of winter corn and soybeans
are planted in the tropical areas of the south and southwest regions,
accounting for less than 5% of national production (Zhang et al.,
2017). Figure A.2 shows that the growing seasons of the two crops are
concentrated around April to September (i.e., spring and summer) when
the country is experiencing frequent heat shocks. This provides us more
data variation for estimating the heat-related yield loss.

Weather. The weather data are from the National Meteorological
Information Center of China, which is the official institute of weather
data gathering and publishing. We collected station-day data for 824
stations across China from 1981 to 2010. To transform the weather
data from the station level to the county level, we use the inverse
5

distance weighting method, a standard method commonly used in the
literature (Deschênes and Greenstone, 2007, 2011; Zhang et al., 2017).
First, we choose a circle with a 200 km radius for each county’s
centroid. We then take the weighted average of the weather data for
all the stations within the circle, where the weights are the inverse of
the distance between each station and the county’s centroid. Finally,
we assign the weighted average to each county.7

4.2. Summary statistics

Weather and crop yields statistics. Table 1 summarizes the corn and
soybean productivity and climate conditions within the growing season
of each crop. The mean value of each variable is the national mean
of county’s average within each time period (1981–1995 and 1996–
2010) weighted by county’s planted area for each crop. To highlight
changes over time, Table 1 reports summary statistics separately for
the 1981–1995 and 1996–2010 periods. From the pre-1996 period to
the post-1996 period, the average annual corn(soybean) yield increased
from 4262 kg/ha (1361 kg/ha) to 5698 kg/ha (1819 kg/ha).

Climate conditions are described by two parts: regular climate
variables including temperature and precipitation as well as additional
climate variables including relative humidity, sunshine duration, wind
speed, evaporation, and ground surface temperature. Evolution of these
climate conditions in Table 1 suggests that the climate has become
hotter, drier, less humid and exposed to less sunshine in the historical
long run. Figure A.3 in Appendix A.1 depicts the spatial distribu-
tions of the temporal change in temperature for corn and soybean
as well as the temporal change of the crop yields while Figure A.4
demonstrates the counterpart of precipitation. The spatial difference
and changing climate provide large variation for reliably estimating the
temperature-yield relationship.

7 Auffhammer et al. (2014) suggest using a relatively continuous weather
record for weather stations when averaging daily station-level data across
space. This is to avoid the large pseudo-variation generated by missing station-
level data, which is crucial for estimating standard errors because the weather
variation should be small in the panel setting relative to the cross-sectional
setting. This is a minor issue, as the proportion of missing values in all
the observations is less than 0.01% for all the climate variables except
evaporation (Zhang et al., 2017). The share of missing values for evaporation
is about 25% and the stations with a large amount of missing observations
for evaporation are all located in the Tibet–Qinghai Plateau, which is dropped
from the analysis.
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Table 1
Summary statistics.

1981–1995 1996–2010

Mean Min Max Std.Dev. Mean Min Max Std.Dev.

Corn

Yields(kg/ha) 4,262.52 111.49 14,764.87 1,772.02 5,697.73 100.24 14,359.79 1,898.82
Temperature (◦C) 20.33 6.01 29.65 3.41 20.80 6.18 30.57 3.39
Precipitation (cm) 45.29 0.27 294.01 16.56 43.62 0.31 280.23 17.53
Humidity (%) 73.29 24.88 94.83 8.08 70.41 27.00 93.51 9.29
Sunshine Hours 6.45 0.94 11.34 1.65 6.41 0.32 11.29 1.61
Wind Speed (m/s) 2.20 0.20 7.25 0.79 2.14 0.19 7.00 0.67
Evaporation (mm) 5.44 0.03 17.75 1.40 3.24 0.00 16.46 2.60
Ground Surface
Temperature (◦C) 23.11 0.20 34.89 3.67 23.80 0.83 36.15 3.39

Observations 29,083 31,917

Soybean

Yields(kg/ha) 1,361.23 66.82 7,101.01 569.40 1,818.71 103.64 7,748.96 629.56
Temperature (◦C) 20.59 7.13 29.11 3.11 20.37 7.82 28.97 3.18
Precipitation (cm) 57.24 0.45 327.68 27.33 53.96 1.05 339.64 28.63
Humidity (%) 73.53 24.85 90.04 6.40 70.67 27.20 90.99 7.06
Sunshine Hours 6.66 2.37 11.20 1.24 6.77 0.33 10.94 1.51
Wind Speed (m/s) 2.41 0.34 6.27 0.67 2.29 0.33 6.93 0.60
Evaporation (mm) 5.63 0.13 17.53 0.94 3.63 0.00 16.36 2.59
Ground Surface
Temperature (◦C) 23.57 0.70 34.56 3.16 23.63 0.69 35.04 2.94

Observations 27,772 28,084

Notes: The mean value of each variable is weighted by the corn or soybean planted area. Crop yields are quantified as the ratio of crop products to the planted area.
Area Planted to Corn and Soybeans. Figure A.5 in Appendix A.1 shows
the trends of area planted to corn and soybean (Panel a) as well as
the trends for the share of total area planted to corn and soybeans
(Panel b). Corn plantation has been expanded substantially over time
while soybeans have remained stable. In correspondence, the share of
corn and soybean acreage accounting for the total planted acreage has
increased about from 20% to 30%. Overall speaking, the two crops have
been accounting for a substantial share of total planted area in the last
three decades.

Statistics for Agricultural Inputs. Due to data availability, we mainly
investigate four agricultural inputs—fertilizer, machinery, irrigation,
and electricity, which potentially may moderate high temperature ef-
fects on crop yields.8 The data set provides data of county-level total
labor input for cropping, fishery, and forestry sectors, which is more
than the real labor input used for crops. Hence, labor will not be
regarded as a major input in the study but evidence on its effect on
moderation of temperature sensitivity will be provided in Appendix
C.1. Irrigation coverage is measured by the fraction of arable land
that is effectively irrigated9; agricultural machinery is measured by
agricultural machinery power used for each hectare of total planted
area; fertilizer is measured by fertilizer inputs used for each hectare of
total planted area; electricity is measured by electricity consumption
per capita of rural population. The total planted area is the aggregate
planted area for all crops. We cannot observe separate inputs for each
crop in the data.

We are interested in changes in the four inputs over time, which
may be potential drivers of the decline in the temperature sensitivity
over the two periods. Figure A.6 in Appendix A.1 depicts the time
trends of the four mainly investigated inputs.10 Each observation in the

8 The four inputs may help farmers moderate extreme temperature effects
n different ways based on agronomic theory. More details are provided in
ppendix A.2.
9 According to Technical Terminology for Irrigation and Drainage by Ministry

f Water Resources of China (1993), effective irrigation area is defined as the
rea of arable land that is relatively flat, accompanied by water sources nearby,
quipped with irrigation infrastructure and can be irrigated normally in the
ituation without extreme weather intervention.
10 Another way to show the change in agricultural inputs over time is
6

xhibiting the distribution of the temporal changes. Figure A.7 in Appendix
trend plot is a county-level average of an adaptive input in a given year.
There is a growing trend of utilizing more inputs in agricultural pro-
duction over time, suggesting that later periods witnessed an increased
use of inputs compared to earlier periods. Irrigation coverage has a
ascending trend with oscillation. As shown in Fig. 2, the oscillation is
driven by the sluggish growth of irrigation coverage of counties that
were not treated by the irrigation expansion project.

Fig. 3 presents the spatial distribution of the counties that are
treated by the national irrigation expansion project versus those that
are not as well as the temporal change of the irrigation coverage
for these two groups. The temporal change of irrigation coverage
is calculated by the difference in county-specific mean of irrigation
coverage between the pre-1996 period and the post-1996 period. It
shows that treated counties are distributed throughout China and there
are large temporal and spatial variations in irrigation coverage, which
facilitates identifying the adaptation effect of irrigation. Most of the
treated counties have experienced a substantial increase of irrigation
coverage, which is consistent with the temporal pattern in Fig. 2.

5. Empirical strategy

This section describes the empirical models to estimate the rela-
tionship between crop yields and weather shocks over time periods
and effects of agricultural inputs in terms of moderating the extreme
temperature impacts.

5.1. The temporal evolution of temperature-yield relationship

We use a panel model with county and province-by-year fixed
effects to estimate the temperature-yield relationship. All the weather
variables are interacted with a dummy variable of period indicator to

A.1 depicts the distribution of the change between the pre-1996 and post-1996
periods for each adaption input. The change in an input variable over time is
calculated by the difference between the 1981–1995 average and the 1996–
2010 average. There are large variations in the change in each input across
counties, allowing us to accurately estimate the effects of inputs in mitigating

extreme heat impacts.
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Fig. 3. Temporal change in irrigation coverage: Treatment versus control.
Notes: Data is missing for counties that never planted corn or soybean from 1981 to 2010. 295 out of the 300 treated counties as the pilots for irrigation expansion can be
observed in our data (the rest 5 treated are state-owned farms which cannot be observed in the agricultural data) (The State Council of China, 1996a). The irrigation coverage is
the percentage of arable land that is effectively irrigated (effectively irrigated area over total arable land area). The temporal change for each county is calculated as the difference
in the county-level mean of irrigation-coverage between the pre-1996 period and post-1996 period.
capture the evolution of temperature-yield relationship due to adapta-
tion. The baseline regression model we estimate is as follows:

𝑦𝑖𝑡 =
𝐷
∑

𝑑=1
𝛽1,𝑑 ⋅ 𝐺𝐷𝐷𝑖𝑡,𝑙0∶𝑙1 ⋅ 𝟏{𝑝𝑒𝑟𝑖𝑜𝑑 = 𝑑}

+
𝐷
∑

𝑑=1
𝛽2,𝑑 ⋅ 𝐺𝐷𝐷𝑖𝑡,𝑙1∶∞ ⋅ 𝟏{𝑝𝑒𝑟𝑖𝑜𝑑 = 𝑑}

+
𝐷
∑

𝑑=1
𝐰𝑖𝑡 ⋅ 𝟏{𝑝𝑒𝑟𝑖𝑜𝑑 = 𝑑} ⋅ 𝜷𝟑,𝒅 +

𝐷
∑

𝑑=1
𝐰′
𝑖𝑡 ⋅ 𝐰𝑖𝑡 ⋅ 𝟏{𝑝𝑒𝑟𝑖𝑜𝑑 = 𝑑} ⋅ 𝜷𝟒,𝒅

+ 𝛼𝑖 + 𝜂𝑝𝑡 + 𝜆𝑖,1𝑡 + 𝜆𝑖,2𝑡
2 + 𝜖𝑖𝑡 (3)

where 𝑦𝑖𝑡 is the log of annual crop yields in county 𝑖 and year 𝑡. 𝐷
denotes the number of periods. We use the year of 1996 to break
the whole 30 years into two periods—pre-1996 period and post-1996
period. 1996 marks the start of a new policy regime where buffering
grain production from volatility due to environmental change has
been put at a higher priority than before and policies that stimulated
investments in inputs came into practice. For example, 1996 witnessed
an exogenous structural change in irrigation caused by the irrigation
project implemented in 1996 which is about constructing 300 key
counties for irrigation expansion and improving agricultural production
whereby we are able to identify adaptation benefits via irrigation while
controlling for relevant confounding factors.

𝐺𝐷𝐷𝑖𝑡 denotes growing degree days, which is classified by
endogenously-selected thresholds into a low-level piece and a high-
level piece. The vector 𝐰𝑖𝑡 denotes extra climate variables other than
temperature including precipitation, relative humidity, sunshine du-
ration, wind speed, evaporation and ground surface temperature and
their quadratic forms captured by the inner product of vector 𝐰𝑖𝑡.
Additional climate variables are controlled for because the full set of
climate variables are correlated (Lawrence, 2005; Wooten, 2011) and
omitting climate variables other than temperature and precipitation can
overestimate the extreme temperature effects on crop yields (Zhang
et al., 2017). The indicator variable 𝟏{𝑝𝑒𝑟𝑖𝑜𝑑 = 𝑑} specifies the time
period denoted by 𝑑 and this interacts with all climate variables.

The specification includes a full set of fixed effects. 𝛼𝑖 denotes the
county fixed effects that accounts for county-specific time-invariant
7

determinants of crop yields such as soil quality; 𝜂𝑝𝑡 denotes province-by-
year fixed effects to account for province-specific shocks that may affect
crop yields (e.g., agricultural subsidies and price shocks).11 By condi-
tioning on county fixed effects and province-by-year fixed effects, the
responses of crop yields to weather shocks are identified from county-
specific deviations in weather about county averages after adjusting for
common shocks to all counties within a province in a year.

The vector of controls also includes a quadratic time trend that is
allowed to vary at the county-year level. The time trend along with
province-by-year fixed effects can control for changes in crop yields
over time at the local level that may confound with the effect of
adaption through adjustments of inputs. One confounding factor is
the gradual advancement in adaptation technology that can increase
marginal adaptation effect of inputs over time such that extreme high
temperature effects may not be moderated through input adjustments.

The variable of central interest is extreme high temperature. The
literature has demonstrated strong nonlinearities in the relationship be-
tween temperature and agricultural outcomes (Schlenker and Roberts,
2009). Nonlinearities are captured by the concept of growing degree
days (GDD), which measure the amount of time a crop is exposed
to temperatures between a given lower and upper bound. Follow-
ing Schlenker and Roberts (2009) and Burke and Emerick (2016),
we use the within-day distribution of temperatures to calculate the
percentage of each day that each county is exposed to temperatures
between given lower and upper bounds, and then sum these daily
exposures over a fixed growing season (e.g., April 10 to October 20
for corn in North region) to get a measure of annual growing degree
days for those bounds.12 The lower temperature piece 𝐺𝐷𝐷𝑖𝑡,𝑙0∶𝑙1 is the

11 Gale (2002) points out agricultural markets in China have been more
regional than national due to each province’s or region’s resource endowments,
local consumer tastes and agricultural growing conditions therefore prices of
the same agricultural product in China have been various across regions.

12 We use trigonometric sine curve to approximate the within-day distribu-
tion following Snyder (1985). In the following illustrative example, we assume
instantaneous temperature within a day is identical. If 𝑙0 = 0 and 𝑙1 = 30, a set
of daily average temperature of −1, 0, 5, 10, 29, 31 and 35 would generate
𝐺𝐷𝐷 equal to 0, 0, 5, 10, 29, 30 and 30 and 𝐺𝐷𝐷 equal to 0, 0,
𝑖𝑡,𝑙0∶𝑙1 𝑖𝑡,𝑙1∶∞
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sum of GDD between bounds 𝑙0 and 𝑙1 and the upper temperature piece
𝐺𝐷𝐷𝑖𝑡,𝑙1∶∞ has a lower bound 𝑙1 and is unbounded at the upper end.

Similarly, we measure precipitation in a county as a piece-wise lin-
ar function with a kink at 𝑝0. The variable 𝑃𝑟𝑒𝑐𝑖𝑡,𝑝<𝑝0 (𝑃𝑟𝑒𝑐𝑖𝑡,𝑝>𝑝0 ) that
s incorporated in the vector 𝐰𝑖𝑡 is the difference between precipitation
nd 𝑝0 interacted with an indicator variable for precipitation being
elow (above) the threshold 𝑝0.13

We set 𝑙0 = 8 because 8 ◦C is considered as the minimum tempera-
ure for crop growth (Chen et al., 2016) and allow the data to determine
1 and 𝑝0 by looping over all possible thresholds and selecting the model
hat best fits the data based on the Bayesian Information Criterion.
his selection process is applied to both the full sample (nationwide)
nd each single region described in Figure A.1 of Appendix A.1. The
elected thresholds for growing degree days and precipitation by region
re reported in Table B.1 of Appendix B.1.14 It shows no change in
emperature thresholds over time periods and small fluctuations in
recipitation threshold over time periods for both corn and soybeans.
s a robustness analysis, we estimate the period-specific weather re-
ponse function in Eq. (3) using the thresholds selected for the 15-year
eriods of 1981–1995 and 1996–2010. The results are presented in
able B.7 of Appendix B.3. The choice of period length, either 10 or
5 years as a period does not make a big difference to the selected
hresholds for the nationwide sample nor for the regional samples. We
lso conduct robustness checks with multiple thresholds other than the
nitially selected ones to avoid threshold misspecificiation.

The key coefficients of the model in Eq. (3) is the 𝛽2 in each period,
hich measures how crop yields are impacted by exposure to extreme
eat in each time period. If effect of adaptation to extreme high tem-
eratures is significant, we expect 𝛽2,𝑑=1 < 𝛽2,𝑑=2 < 0; in other words,
he estimated marginal effect of a daily exposure to temperature above
he threshold in the later period should be significantly lower than
hat in the earlier period. The value (𝛽2,𝑑=1 − 𝛽2,𝑑=2)∕𝛽2,𝑑=1 provides the

percentage of the direct impacts of extreme heat offset by adaptation.
As the robustness analysis, we examined whether temporal evolu-

tion of the temperature-yield relationship is robust to changes of model
specifications. We change the standard error estimator, manipulated
temperature thresholds and specifications of time periods, and remove
outlier observations for yield growth. Moreover, we check whether
the temporal evolution of the temperature-yield relationship in corn
and soybeans is applied to other major grains including wheat and
rice, which can be used to infer the adaptive capacity of the overall
agriculture to climate change.

5.2. Estimating marginal adaptation effects of inputs

This part of empirical analysis aims to figure out inputs that may
have muted the temperature-yield relationship overtime. We estimate
an augmented panel model described in Eq. (4), where the interactions
of temperature variables and the quantities of agricultural inputs are
added to estimate the marginal adaptation effects of inputs, which is
the parameter of 𝐹𝑇𝑥𝑖 in Eq. (2).

𝑦𝑖𝑡 =𝛽1 ⋅ 𝐺𝐷𝐷𝑖𝑡,𝑙0∶𝑙1 + 𝜃1 ⋅ 𝐺𝐷𝐷𝑖𝑡,𝑙0∶𝑙1 ⋅ 𝐈𝐧𝐩𝐮𝐭𝐬𝑖𝑡
+𝛽2 ⋅ 𝐺𝐷𝐷𝑖𝑡,𝑙1∶∞ + 𝜃2 ⋅ 𝐺𝐷𝐷𝑖𝑡,𝑙1∶∞ ⋅ 𝐈𝐧𝐩𝐮𝐭𝐬𝑖𝑡
+𝜙 ⋅ 𝐈𝐧𝐩𝐮𝐭𝐬𝑖𝑡 + 𝐰𝑖𝑡 ⋅ 𝜷𝟑 + 𝐰′

𝑖𝑡 ⋅ 𝐰𝑖𝑡𝜷𝟒 + 𝛼𝑖 + 𝜂𝑝𝑡 + 𝜆𝑖,1𝑡 + 𝜆𝑖,2𝑡
2 + 𝜖𝑖𝑡 (4)

0, 0, 0, 1 and 5. This example is the same as the one in Burke and Emerick
(2016).

13 We use a simple example to illustrate the idea of piece-specific linear
measurement of precipitation. Suppose a county with precipitation of 60 cm
this year and the kink point is 48 cm, then 𝑃𝑟𝑒𝑐𝑖𝑡,𝑝<𝑝0 = 0 and 𝑃𝑟𝑒𝑐𝑖𝑡,𝑝>𝑝0 = 12.

14 To check whether the thresholds are distinct for different time periods, we
also allow thresholds to vary over time and conduct the threshold selection for
each period separately The results are presented in Table B.7 of Appendix B.3.
8

where 𝐈𝐧𝐩𝐮𝐭𝐬𝑖𝑡 is a vector of inputs that including irrigation, machinery,
fertilizer, and electricity. Eq. (4) is different from Eq. (3) in two ways.
First, Eq. (4) includes the main effects for the inputs (denoted by
𝐈𝐧𝐩𝐮𝐭𝐬𝑖𝑡 ⋅ 𝜙) and their interactions with the temperature variables to
estimate marginal adaptation effects of inputs, the extent to which the
effect of an additional-day exposure to high temperatures is affected
by marginal increase in inputs. We also interact irrigation with all
precipitation variables considering that precipitation can affect the
abundance of irrigating water. All other specifications are the same
as Eq. (3). Second, Eq. (4) is estimated without specifying the period-
specific effects. This specification aims to derive a uniform estimation
of marginal adaptation effects of inputs over time periods, which echoes
the assumption that marginal adaptation effects of inputs remain stable
over time. The adaptation effect of each input is estimated by com-
paring the temperature sensitivity of yields in counties with a larger
increase of input adoption to that in counties with a smaller increase or
even decrease. Our hypothesis is that the coefficients for the interaction
terms (𝜃2) will be positive at the high temperature categories. A positive
coefficient vector (𝜃2 > 0) would be interpreted as evidence that
the diffusion of a particular input reduces a crop’s vulnerability to
temperature extremes.

The primary challenge to identification of the inputs’ adaptation
effects is the fact that the variation in inputs is not experimental, so
the estimation of 𝜃2 coefficients is likely to be biased. The province-
by-year fixed effects and county-specific quadratic time trends are
controlled for so that the bias generated by confounding factors cannot
occur through province-by-year differences (e.g., Province A expanded
irrigation coverage this year relative to Province B as A encountered a
growing season with abnormally high temperature) or county-specific
gradual changes that may affect crop yields (e.g., adoption of new seed
varieties that are more resilient to extreme heat). Moreover, we have
three strategies to bolster the credibility of the OLS estimation of the
marginal adaptation effects of inputs. First, we investigate the reactions
of the four examined inputs to high-temperature shocks. If these inputs
do not exhibit responsiveness to high-temperature shocks, it becomes
less likely that their usage is correlated with unobserved adaptation
measures induced by high temperature exposure.

Second, interactions between inputs and the low temperature cate-
gory (i.e., 𝐺𝐷𝐷𝑙0∶𝑙1 ) serves as a placebo check because adaptive inputs
should not directly protect crops from low temperatures. Third, we
add a temperature-by-year trend to Eq. (4) as a robustness check
following Barreca et al. (2016). The local temperature trend consists
of the interaction between all the temperature variables and a linear
year trend. This specification allows for the possibility that temperature
sensitivity of crop yields changes over time for temperature-related
factors that may be correlated with the investigated inputs. In addition
to local temperature trend, we further control for factors that may affect
use of adaptation inputs. Utilization of inputs for adaptation such as
water, fertilizer, electricity, and machinery relies on local economic
prosperity and infrastructure development. In light of this, interactions
of temperature variables with local GDP and cargo quantities shipped
by road (a proxy for infrastructure development) over time are added
to Eq. (4) as a second check of robustness. The results for these two
robustness checks are provided in Section 6.2.

5.3. Identifying adaptation effects of irrigation through exogenous variation

The major empirical challenge in identifying the marginal adapta-
tion effect of inputs lies in the potential omitted variable bias. The
investigated adaptive inputs, including irrigation, fertilizer, machinery,
and electricity, could be correlated in either a positive or negative
direction. For example, irrigation might be utilized in conjunction
with other unobserved adaptive instruments as a response to high-
temperature shocks, leading to co-variation with confounding adaptive
instruments in the same direction. Conversely, investments in irrigation

might also reduce investments in other adaptive instruments, given a
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tightening budget constraint, potentially compromising the moderating
effect of irrigation on agricultural sensitivity to high temperatures.
Due to the ambiguous effects of confounding factors on the adaptation
effects of the four investigated inputs, the direction of the omitted
variable bias is unknown a priori.

To address this issue and identify the adaptation effects through ad-
justments in agricultural inputs, we take advantage of quasi-
experimental variations in adaptive inputs. Specifically, we leverage
the irrigation expansion project that designated 300 counties as pilots
to stimulate irrigation expansion with financial support since 1996.
This allows us to isolate variation of irrigation from other confounding
factors.

5.3.1. Documenting exogenous variation in irrigation
We first establish the causal relationship between the project and ir-

rigation coverage using a difference-in-differences (DID) model that re-
lies on the temporal and geographic variations in the project treatment.
The baseline DID regression model is in Eq. (5).

Irrigation𝑖𝑡 = 𝛽 ⋅ Project𝑖𝑡 +𝐖𝑖𝑡 ⋅𝛱 + 𝛼𝑖 + 𝜂𝑝𝑡 + 𝜆𝑖,1𝑡 + 𝜆𝑖,2𝑡
2 + 𝜖𝑖𝑡 (5)

here the outcome variable is the irrigation coverage of county 𝑖 in
ear 𝑡, Project𝑖𝑡 is the project implementation indicator which takes
he value of one for treated counties after 1996, and 𝐖𝑖𝑡 is a vector
ncluding all the climate variables which have the same specifications
s those in Eq. (3). 𝛼𝑖’s are the county fixed effects that control for
ime-invariant factors that affect irrigation coverage (e.g. a county’s
opographic character can affect the cost of irrigation investment). 𝜂𝑝𝑡’s
re the province-by-year fixed effects that control for provincial-level
hocks that have generated spatial differences in irrigation coverage but
onfound with the irrigation expansion project and improving agricul-
ural production (e.g. provincial-level policies that affect investments
n irrigation). 𝜆𝑖,1𝑡+𝜆𝑖,2𝑡2 is county-specific time trend that controls for
mooth changes in irrigation coverage. Standard errors are clustered at
ounty level.

Identification of the causal effect 𝛽 requires the regular parallel-
rend assumption that time trends of irrigation coverage would have
een similar between counties that are treated by the irrigation project
nd those that are not in absence of the project treatment. Although
ig. 2 demonstrates the parallel trends before irrigation project imple-
entation, the parallel trend hypothesis will be tested by an event study

hat estimates year-wise changes in irrigation coverage before and after
mplementation of the irrigation project within a time window of at
east 20 years (10 years before treatment and 10 years after) using the
ollowing equation.

rrigation𝑖𝑡 =
10
∑

𝑘=−10
𝛽𝑘 ⋅𝐷𝑖,𝑡0+𝑘 +𝐖𝑖𝑡 ⋅𝛱 + 𝛼𝑖 + 𝜂𝑝𝑡 + 𝜆𝑖,1𝑡 + 𝜆𝑖,2𝑡

2 + 𝜖𝑖𝑡

The dummy variables 𝐷𝑖,𝑡0+𝑘 jointly represent a time window of
10 years around the event of irrigation project implementation. In
particular, 𝑡0 denotes the year when county 𝑖 was treated by the
irrigation project. 𝐷𝑖,𝑡0+𝑘 is a series of dummies indicating whether
𝑡 − 𝑡0 = 𝑘 with −10 ≤ 𝑘 ≤ 10. The omitted time category is 𝑘 = −1, the
parameters of interest 𝛽𝑘 identify the treatment effects 𝑘 years following
its occurrence.

The exogeneity of the irrigation expansion project necessitates that
the irrigation project does not cause changes in confounding adaptive
inputs that cannot be observed. We will conduct two tests to ensure that
the irrigation project affects temperature-yield relationship solely by
increasing irrigation coverage. First, we will test whether the irrigation
project has led to changes in other observed inputs including labor, fer-
tilizer, machinery, and electricity using the DID specification in Eq. (5)
(changing the outcome variable in Eq. (5) to other inputs). Second, we
will assess whether the assignment of the project treatment is correlated
with contemporaneous and past temperatures because adaptive inputs
may respond to contemporaneous or previous temperature shocks.
9

5.3.2. Unraveling the moderating effect of exogenous access to inputs on
yield sensitivity to high temperatures

We propose a causal framework to examine whether increasing
access to irrigation expansion through the irrigation expansion project
mitigates the impacts of extreme high temperatures on crop yields. To
take advantage of the temporal and spatial variation in irrigation, a
model incorporating the interaction between project implementation
and temperatures is constructed. Conceptually, the interaction model
employs a difference-in-differences (DID) design to estimate the effect
of access to irrigation via the irrigation expansion project on the
temperature-yield relationship. It compares within-county temperature
effects before and after the irrigation expansion project was imple-
mented. If no other adaptive inputs change at the same time as the
treatment assignment changes, this will identify the causal effect of the
irrigation project on the temperature-yield relationship. The interaction
model is expressed in Eq. (6).

𝑦𝑖𝑡 =𝐺𝐷𝐷𝑖𝑡,𝑙0∶𝑙1 ⋅ 𝛽1 + 𝐺𝐷𝐷𝑖𝑡,𝑙0∶𝑙1 ⋅ Project𝑖𝑡 ⋅ 𝛾1 + 𝐺𝐷𝐷𝑖𝑡,𝑙1∶∞ ⋅ 𝛽2
+𝐺𝐷𝐷𝑖𝑡,𝑙1∶∞ ⋅ Project𝑖𝑡 ⋅ 𝛾2
+Project𝑖𝑡 ⋅ 𝜙 + 𝐰𝑖𝑡 ⋅ 𝜷𝟑 + 𝐰′

𝑖𝑡 ⋅ 𝐰𝑖𝑡𝜷𝟒 + 𝛼𝑖 + 𝜂𝑝𝑡 + 𝜆𝑖,1𝑡 + 𝜆𝑖,2𝑡
2 + 𝜖𝑖𝑡 (6)

The outcome variable of interest in Eq. (6) is log yields of corn or
soybean. Project𝑖𝑡 is the treatment indicator for the irrigation expan-
sion project which takes the value of one for treated counties after
1996. Climate variables, fixed effects and county-specific quadratic
time trends have the same specifications as Eq. (3). In addition to
time fixed effects controlling for differences in crop yields over time
that are common to counties in a given province, our interaction
model also allows for county-specific smooth changes in yields using
county-specific quadratic time trends. The treatment effect muting the
temperature-yield relationship is captured by the interaction between
the project implementation and the high temperature variable. 𝛾2 is
the coefficient of interest, which identifies how the high temperature
effects on crop yields depend on access to irrigation through the project.

6. Results

This section presents the estimation results in Section 5. We first
estimate the period-specific effects of random year-to-year variation in
temperature on the yields of corn and soybeans. We then quantify roles
of agricultural inputs in the temporal evolution of temperature sensi-
tivity by estimating marginal adaptation effects of inputs and changes
in penetration rates of inputs over periods. At last, we investigate
how the increased access to irrigation due to the irrigation expansion
project has mitigated the yield sensitivity to high temperatures. For
the accessibility of the empirical results, the unit for the temperature
hereafter is 100 degree days and the unit for precipitation is 100
centimeter(cm).

6.1. Temporal evolution of the temperature-yield relationship

6.1.1. Temperature-yield relationship for corn and soybeans
Table 2 presents the temporal evolution of temperature-yield rela-

tionships of corn and soybeans in Panel A and Panel B, respectively.
In our analysis, we adopt a piece-wise linear approach, wherein crop
yields are expected to increase linearly up to an endogenous threshold
and then decrease linearly beyond that point. Columns 1–3 differ in the
specification of fixed effects, as outlined in the table. On the other hand,
Columns 4 and 5 vary from Columns 1–3 in terms of the estimation
of standard errors. In Columns 1–3, we cluster the standard errors at
the county level. In comparison, for Columns 4 and 5, we use spatial
HAC robust standard errors, taking into account heteroskedasticity,
county-specific serial correlation and cross-sectional spatial correlation
of the error term. The results remain robust when using spatial HAC

robust standard errors. The selected temperature threshold for corn and
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Table 2
Temperature-yield relationship of corn and soybeans over time periods.

(1) (2) (3) (4) (5)
Log Yields Log Yields Log Yields Log Yields Log Yields

A. Temperature-yield relationship of corn

period=1981 × GDD below T 0.0449*** −0.0096 0.0086 −0.0096 0.0086
(0.0065) (0.0097) (0.0083) (0.0122) (0.0116)

period = 1996 × GDD below T 0.0067 −0.0057 0.0045 −0.0057 0.0045
(0.0069) (0.0099) (0.0089) (0.0121) (0.0110)

period = 1981 × GDD above T −0.3753*** −0.2879*** −0.2295*** −0.2879*** −0.2295***
(0.0279) (0.0330) (0.0292) (0.0478) (0.0431)

period = 1981 × GDD above T −0.0405** −0.0834*** −0.1147*** −0.0834** −0.1147***
(0.0203) (0.0277) (0.0272) (0.0364) (0.0382)

𝑝-Value of 𝐻0 ∶ 𝛽1981 = 𝛽1996 0.0000 0.5667 0.5463 0.5538 0.5973
for GDD below T

𝑝-Value of 𝐻0 ∶ 𝛽1981 = 𝛽1996 0.0000 0.0000 0.0001 0.0000 0.0114
for GDD above T

T Threshold 28 ◦C 28 ◦C 28 ◦C 28 ◦C 28 ◦C
P Threshold 51 cm 51 cm 51 cm 51 cm 51 cm

B. Temperature-yield relationship of soybean

period = 1981 × GDD below T 0.0108 0.0257 0.0427*** 0.0257* 0.0427***
(0.0088) (0.0157) (0.0107) (0.0141) (0.0108)

period = 1996 × GDD below T 0.0004 0.0210 0.0279** 0.0210 0.0279***
(0.0091) (0.0159) (0.0117) (0.0140) (0.0100)

period = 1981 × GDD above T −0.0310 −0.1621*** −0.1572*** −0.1621*** −0.1572***
(0.0218) (0.0292) (0.0218) (0.0273) (0.0252)

period = 1996 × GDD above T 0.0619*** −0.0747** −0.0828*** −0.0747*** −0.0828***
(0.0193) (0.0290) (0.0204) (0.0249) (0.0225)

𝑝-Value of 𝐻0 ∶ 𝛽1981 = 𝛽1996 0.0001 0.2037 0.0120 0.1408 0.0099
for GDD below T

𝑝-Value of 𝐻0 ∶ 𝛽1981 = 𝛽1996 0.0000 0.0001 0.0029 0.0000 0.0161
for GDD above T

T Threshold 26 ◦C 26 ◦C 26 ◦C 26 ◦C 26 ◦C
P Threshold 44 cm 44 cm 44 cm 44 cm 44 cm

Observations 59,269 59,274 59,274 59,274 59,274
R squared 0.0708 0.0338 0.0210 0.0338 0.0210
County FE Yes Yes Yes Yes Yes
Prov-Year FE No Yes Yes Yes Yes
County Quadratic Trend No No Yes No Yes
Standard Error Clustered Clustered Clustered Spatial HAC Spatial HAC
Distance N/A N/A N/A 500 km 500 km
Years of Lag N/A N/A N/A 5 5

Notes: The outcome variable and all the regressors are demeaned by removing various fixed effects and year trends before the regression models are fit into the data. Each column
corresponds to a separate regression varying on specifications of fixed effects, county-specific quadratic trends, and standard error estimators. The dependent variable is log annual
yields of corn or soybean. The regressions are weighted by annual hectares planted to the two crops. Only coefficients for temperatures are reported. Precipitation and additional
climate variables are also controlled for and their results are reported in Appendix B.2. The selected temperature threshold for corn and soybeans is set at 28 ◦C and 26 ◦C,
espectively, while the precipitation threshold is established at 51 cm for corn and 44 cm for soybean. The 𝑝 values for testing the hypotheses of coefficient estimate distinction for
emperature variables are provided at the bottom of the table. For simplicity, only the number of observations and the R squared for regressions on corn are reported. * 𝑝 < 0.1,
* 𝑝 < 0.05, *** 𝑝 < 0.01.
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oybeans is set at 28 ◦C and 26 ◦C, respectively, while the precipitation
hreshold is established at 51 cm for corn and 44 cm for soybean.

Regarding the exposure to growing degree days (GDD), results show
hat in the periods of 1981–1995 and 1996–2010, GDD values below
he threshold of 28 ◦C for corn and 26 ◦C for soybean have minor
nd generally insignificant effects on yields. However, exposure to tem-
eratures above these thresholds leads to significant declines in crop
ields. As shown in Panel A, during the 1981–1995 period, corn yield
osses due to an additional 100-day exposure to temperatures above
8 ◦C range from −37% to −23%, while the corresponding estimates
n the period of 1996–2010 range from −11% to −4%, which are
ignificantly lower than the yield loss estimations of 1981–1995. This is
vident from the 𝑝 values derived from an 𝐹 test of the null hypothesis
1981 = 𝛽1996. Columns 1 to 3 demonstrate that the temperature-yield
elationship over the two periods remains robust to the province-by-
ear differences and county-specific gradual changes in unobserved
eterminants of corn yields. These factors indeed affect the extent of
eduction in yield loss due to extreme temperatures. In summary, the
10
indings indicate the critical impact of temperature on corn and soy-
ean yields and provide valuable insights into the adaptive capacity of
hese crops under varying conditions. From Column 1 to 3, the relative
daptation effects are 90%, 71%, and 50%, respectively, indicating
decline as the model specifications become more restrictive.15 The

1.5 percentage-point or 50% ((0.2295-0.1147)/0.2295) decline in the
xtreme temperature effects over time is therefore considered the most
alid estimation of the overall adaptation effect.

Panel B of Table 2 displays the results for soybean. Similar to corn,
ncreases in exposure to temperatures above 26 ◦C lead to significant
eclines in soybean yields. During the period of 1981–1995, yield losses
ue to additional 100-day exposures to temperatures above 26 ◦C range
rom −16% to −3%, while in the period of 1996–2010, the range is
rom −8% to 6%. These values are notably lower than the yield loss

15 The relative adaptation effects for different model specifications are
estimated through the uniform formula shown in the previous section: (𝛽2,𝑑=1−
𝛽 )∕𝛽 .
2,𝑑=2 2,𝑑=1
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estimation of the pre-1996 period, as indicated by the row of p-values
derived from an F-test of the null hypothesis. The decline in extreme
temperature effects over time remains robust across various specifica-
tions, including fixed effects, time trends, and standard error estimator.
In Column 3, we present the primary result of the temperature-yield
relationship estimation using the main specification in Eq. (3). The
7.4 percentage-point decline or 47% ((0.1572-0.0828)/0.1572) decline
in the extreme temperature effects represents the overall adaptation
effects on soybean. The estimation of the temperature-yield relationship
for both corn and soybeans controls for precipitation and additional
climate variables, the results of which are presented in Appendix B.2.

Corn and soybeans have been accounting for a substantial share
of total planted area in the last three decade, as demonstrated by the
time trend of planted area of the two crops and the percentage of total
farmland planted to the two crops shown in Figure A.5 This implies
that the magnitude of the decline in the yield loss due to extreme high
temperatures is substantial. The annual average corn yield in the post-
1996 period is 5697.7 kg (see Table 1). Therefore, it saves about 655 kg
(5697.7 × 11.5%) of corn per hectare if the effect of 100-day exposure
o temperature above 28 ◦C is reduced from 23% to 11%. The annual
lanted area of corn in the post-1996 period is 24.8 million hectares
n average. Therefore, the loss reduction of national aggregate corn
roduction is about 16 million tons (0.655 ton/hectare × 24.8 million
ectares) or 14.5% of the national corn production per year compared
ith the scenario in which the pre-1996 extreme temperature impacts
revailed (The annual average of national corn production after 1996
s about 112.03 million tons). The loss reduction of aggregate soybean
roduction is about 1.1 million tons or 7% per year based on the same
easoning. A presumption for our back-of-envelop estimation of the loss
eduction is that the planted areas of the two crops are not affected by
emperature extremes, which will be verified by the following study on
he effects of high temperature shocks on planted area specific to corn
nd soybeans.

To test whether 1996 serves as an appropriate breakpoint between
wo regimes for adaptation to climate change, we estimate the temporal
volution of the temperature-yield relationship using a 5-year or 10-
ear period as the period specification.16 The results are reported in
ig. 4, which displays the point estimates and 95% confidence intervals
f the extreme temperature impacts on crop yields in the first period
1981–1986 is the first period in the 5-year setting and 1981–1990
s the first period in the 10-year setting) and of the change in the
xtreme temperature impacts in later periods relative to the first period.
arious temperature thresholds are also applied to the 5-year and 10-
ear period settings, the results for which are reported in Figure B.3 to
igure B.6 in Appendix B.5.

The significant difference between the initial period and later peri-
ds mainly happen for the periods after 1996. In the 5-year setting,
he improvement of temperature sensitivity to extreme heat for the
986–1990 period and 1991–1995 period is not statistically significant
t 5% level, which implies that the adaptation effect mainly happened
fter 1996 and justifies 1996 as the break point for two regimes of the
emperature-yield relationship.

A secondary result documents heterogeneous temperature-yield re-
ationship by the crop regions defined in Figure A.1 (Liu, 1993). This
pproach allows us to investigate whether areas that are accustomed
o temperature extremes have adapted better such that they have a
ore muted temperature-yield relationship. The estimation is con-
ucted with a single regression in which the sample is restricted to

16 An alternative way of checking the robustness of the results to the ending
ears of the time periods is running panel regressions over rolling time periods
uch as 1950 to 1965 compared with 1966 to 1980, 1966 to 1980 compared
ith 1981 to 1995, 1981 to 1995 compared with 1996 to 2010, and so on.
owever, we only collected 30 years of data from 1981 to 2010. Hence, using
11

olling time periods is not feasible.
the corresponding corn regions in Figure A.1. The results are reported
in Table B.9 and Table B.10 of Appendix B.4. We find that northern
regions generally suffer more from extreme temperatures than southern
regions and the yield loss of the two crops due to temperature extremes
in the southern regions has declined by a larger extent than that of the
northern regions, which is consistent with the idea that hotter places
adapt to temperature extremes better than cooler ones.

6.1.2. Robustness analyses
The standard error estimator is changed to a spatial HAC standard er-

ror estimator in the robustness check to account for heteroskedasticity,
county-specific serial correlation and cross-sectional spatial correla-
tion (Hsiang, 2010). The nonparametric estimation of the variance–
covariance matrix for the error term allows for contemporaneous spa-
tial correlations between counties whose centroids lie within 𝑑 km of
one another (Conley, 1999). Following Conley (2007), the weights in
the matrix are uniform up to the cutoff distance 𝑑. Moreover, non-
parametric estimates of county-specific serial correlation are estimated
using linear weights that decrease to zero after a lag length of 𝑞
years (Newwey and West, 1987). In our model, the cutoff distance 𝑑
akes the value from 100 km to 400 km with an increment of 100 km
nd the length of years 𝑞 is 3 years or 5 years. We find that the spatial
AC standard errors do not change the estimation of temperature-
ield relationships for the two crops compared with clustering-robust
tandard errors. The results are reported in Figure B.1 in Appendix B.4.
Extreme values of yield change are dropped from the sample. Ac-

ording to Figure A.3, about 200 counties observed an extreme drop
n crop yields by more than 30% or an extreme increase by more
han 120% during last 30 years. Such a heavy-tailed (outlier-prone)
istribution makes a predicted regression line tend to fit more closely
utlying observations at the expense of the rest of data sample. We
rop observations with a decline in yields of more than 30% or an
ncrease of more than 120% and re-estimate the period-specific weather
esponse function as specified by the panel fixed effect model in Eq. (3)
ntroduced in Section 5.1. The results are reported in Table B.8 of
ppendix B.3. We find that the decline in temperature-related yield loss
till hold, suggesting that the decline in high temperature effect is not
riven by outliers in yield change.
Various temperature thresholds are applied to check the sensitivity of

stimation to variation in temperature thresholds. It is a concern that
he selected temperature thresholds may be misspecified. Figure B.2 in
ppendix B.4 reports the estimation of temperature-yield relationships
f corn and soybeans using five consecutive temperature thresholds
ncluding the initially selected thresholds in Table 2.17 The significance
f the yield loss decline is robust to variation in temperature thresholds.
The model specification is changed from a period-specific panel model

o a more flexible panel model that allows all the climate variables to
nteract with polynomials of calendar years such that the impact of ex-
reme temperature can change smoothly and flexibly over time (Roberts
nd Schlenker, 2011). The polynomial takes linear, quadratic and cubic
orm in this study. Figure B.7 and Figure B.8 in Appendix B.5 display
he coefficients for the high temperature impacts over time. The linear
nd quadratic form of year trend exhibit a steadily rising tolerance of
rop yields to extreme temperatures. In the linear(quadratic) model,
he effect of 100-day exposure to temperatures above 28 ◦C on corn
ields increases from −23% (−27%) to −9% (−13%), consistent with
he results provided by the period-specific panel model. We have a
imilar evolutionary pattern for soybean. The model of cubic time trend
epicts a more complex evolutionary path but exhibits an improving
rend of heat tolerance.

17 We fix the precipitation thresholds at the initially selected values in
Table 2, as we find that changing the precipitation thresholds does not change
the estimation results and the results are available upon request.
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Fig. 4. Sensitivity of Results to Starting Year and Length of Time Period–Using 5 years or 10 years as a Period.
Notes: Fig. 4 presents the evolution of extreme temperature effect on crop yields estimated with model in Eq. (3) using 5 years or 10 years as a period. The regressions are weighted
by annual planted area for each crop and the standard errors are clustered at the county level. In each panel, we report the point estimates and the corresponding confidence
intervals at the 95% significance levels for the effects of 100-day exposure to temperature above the threshold in the first period (period 1981–1985 or period 1981–1990 denoted
by the circle symbol) and the difference in the effects between the following periods and the first period (denoted by the triangle symbol). The initial year for each period is
specified below the horizontal axis.
6.1.3. More discussions
How informative is the decline of temperature sensitivity of corn

and soybeans about the adaptive capacity of overall agriculture? It is
likely that temperature sensitivity of the overall agriculture may not
be changed because farmers who experienced high temperature shocks
during the growing season or long-run increase in temperature normal
may switch to crops which are less sensitive to high temperatures mak-
ing it appear that corn and soybeans in the remaining cropped areas
are less sensitive while the overall sensitivity of agriculture might not
have changed. We examine the applicability of temporal pattern of corn
and soybeans to the overall agriculture from two perspectives. First, we
check if there exists crop switching in response to temperature shocks
or long-run change in temperature normal by estimating temperature
sensitivities of corn and soybean cropland and how the substitutability
between corn or soybean and other grain crops is affected by high tem-
peratures. We established both a panel model to estimate the effects of
short-run high temperature shocks (Deschênes and Greenstone, 2007;
Aragón et al., 2021) and a long-difference model to estimate the effects
of long-run temperature change (Burke and Emerick, 2016). Table B.11
and Table B.12 in Appendix B.6 report the results for the impacts of
high temperature shocks and long-term increase in temperature normal
on cropland adjustments. We find that exposure to short-run high
temperature shocks or long-term extreme heat does not cause shrinkage
of corn and soybean plantation nor causes switching away from corn
12
and soybeans to other crops. The decline in the temperature sensitivity
of corn and soybeans is not caused by crop selection.

Second, we investigate the temporal evolution of temperature-yield
relationships for wheat, rice and the overall grain category. Table B.13
in Appendix B.7 reports the temporal evolution of temperature sensi-
tivity of wheat, rice, and overall grain yields. Rice is categorized into
single-season rice which is planted in dryland of northern China and
multiple-season rice which is planted in paddy field of southern China.
We find that point estimates of temperature sensitivities for wheat,
single-season rice, and the overall grain decline over time periods and
the decline for the wheat yields and the overall grain is statistically
significant. This suggests that the decline of temperature sensitivity is
prevalent for grain crops rather than only exists for corn and soybeans.
As the single-season rice is only planted in a few counties of northern
China, the sample size for the single-season rice is not large enough to
generate an inferential estimate of temperature sensitivity. The point
estimates for the multiple-season rice are much smaller than those for
the single-season rice because the temperature sensitivity of the former
is moderated by the paddy field just like the function of irrigation.

6.2. Mechanisms: Estimating adaptation effects of agricultural inputs

The analysis in Section 6.1 showed a large decline in the temper-
ature sensitivity of crop yields. The question that arises is why the
temperature sensitivity declines over time periods. We address this
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Table 3
Interaction effects of inputs with high temperatures.

(1) (2) (3) (4) (5)
Log Yields Log Yields Log Yields Log Yields Log Yields

A. Interaction effects for corn

GDD above T −0.2976*** −0.1471*** −0.1637*** −0.1512*** −0.2704***
(0.0393) (0.0259) (0.0315) (0.0255) (0.0397)

GDD above T × Irrigation (%) 0.2522*** 0.2815***
(0.0452) (0.0498)

GDD above T × Machinery (kW/Ha) 0.0013 −0.0045
(0.0023) (0.0029)

GDD above T × Fertilizer (Ton/Ha) 0.0833 −0.1304
(0.0815) (0.0958)

GDD above T × Electricity (kWh per capita) 0.0236 0.0173
(0.0328) (0.0227)

T Threshold 28 ◦C 28 ◦C 28 ◦C 28 ◦C 28 ◦C
P Threshold 51 cm 51 cm 51 cm 51 cm 51 cm

Inputs Included Irrigation Machinery Fertilizer Electricity All Combined

B. Interaction effects for soybeans

GDD above T −0.1937*** −0.1275*** −0.1265*** −0.1140*** −0.2113***
(0.0391) (0.0231) (0.0230) (0.0235) (0.0425)

GDD above T × Irrigation (%) 0.1384*** 0.1507***
(0.0495) (0.0527)

GDD above T × Machinery (kW/Ha) 0.0006 −0.0004
(0.0005) (0.0036)

GDD above T × Fertilizer (Ton/Ha) 0.0026 0.0063
(0.0023) (0.0252)

GDD above T × Electricity (kWh per capita) −0.0159 −0.0190
(0.0230) (0.0257)

T Threshold 26 ◦C 26 ◦C 26 ◦C 26 ◦C 26 ◦C
P Threshold 44 cm 44 cm 44 cm 44 cm 44 cm

Inputs Included Irrigation Machinery Fertilizer Electricity All Combined

Observations 59,255 59,229 59,229 59,169 59,136
R squared 0.8663 0.8686 0.8686 0.8419 0.8702

Notes: The dependent variables are log annual yields of corn or soybean for all the regressions. Each column corresponds to a separate regression varying on the number of
inputs that are investigated. Precipitation and additional climate variables including relative humidity, sunshine duration, wind speed, evaporation, and ground temperatures are
controlled for in all the regressions. The standard errors are clustered at county level and the regressions are weighted by annual corn planted area. All the regressions take into
account county fixed effects, province-year fixed effects, and county-specific quadratic time trends. For simplicity, only the number of observations and R squared for regressions
on corn are reported. * 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01.
question in two steps. The first step estimates the marginal adaptation
effects of agricultural inputs, which is the parameter of 𝜕2𝐹∕𝜕𝑇 𝜕𝑥 in the
conceptual framework of Section 3. It also helps us determine which in-
puts contribute to the decline in temperature sensitivity of crop yields.
The marginal adaptation effects are estimated by the interactions of
extreme high temperatures with quantities of inputs in Eq. (4).

We now describe the estimation results of Eq. (4), the augmented
model to quantify how agricultural inputs moderate the impacts of
extreme temperatures on crop yields. The data allows us to examine
four inputs. Table 3 reports the direct effects of exposure to extreme
temperatures on the two crops and the interaction effects between
the extreme temperature variables and input variables.18 Each inter-
action effect captures how the extreme temperature impacts on yields
have been moderated by marginal increase in the corresponding input,
i.e., the marginal adaptation effect of each input. We consider the
specification in which each input enters individually (Columns 1–4 in

18 Labor is also an important input but the dataset only provides observa-
ions of the aggregate labor input for cropping, forestry, husbandry, fishery
nd agricultural manufacturing, which cannot be an accurate measure of the
abor input for each crop. We provide the results for the interaction model
ncorporating aggregate labor input and compare the adaptation effect of labor
ith the counterparts of other inputs in Table C.1. We do not find either
13

tatistically or economically significant adaptation effect of labor.
Table 3) as well as the one in which all the inputs enter the same
specification (Columns 5 in Table 3).

Columns 1 in Table 3 show that the diffusion of irrigation is asso-
ciated with a sizable and significant decrease in crop yield loss due to
extreme temperatures. In Table 3, an expansion of irrigation coverage
from 0% to 100% in a county is associated with a reduction in the
impact of 100-day exposure to extreme temperatures on corn (soybean)
yields by 25 to 28 (13 to 15) percentage points on average. On the
contrary, none of the other three inputs generate significant reduction
in the extreme temperature impacts on crop yields.

Endogeneity of the agricultural inputs may lead to biased estimation
of the adaptation effects of inputs. There are three pieces of evidence
that lend credibility to the OLS estimation of adaptation effects of
inputs. First, we examine the responses of agricultural inputs to high
temperature shocks. Table C.2 in Appendix C.1 demonstrates that input
adjustment is not significantly associated with high temperature shocks,
which suggests that the investigated inputs are less likely to co-vary
with unobserved adaptation strategies that may confound the effects of
the investigated inputs.

Second, as a placebo test, we show that none of the inputs moder-
ates the yield sensitivity to low temperatures, suggesting that adoption
of these adaptation strategies is not coincident with factors that deter-
mine the overall crop yields. The results are provided in Table C.3 in
Appendix C.1. Third, we add a temperature-by-year trend and inter-

actions of temperature with factors that may affect farmers’ decision
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making on input utilization to Eq. (4) to account for confounding fac-
tors that co-vary with the inputs following Barreca et al. (2016).19 Table

.4 in Appendix C.1 presents the results of this robustness analysis.20

omparison of Table C.4 with Table 3 suggests that controlling for
otential confounding factors through the above specifications does not
ignificantly change the estimates of the adaptation effects of inputs.
he robustness analysis thus supports the key finding that irrigation is
he central adaptation input among the four examined ones.

Based on the estimated marginal adaptation effects of the four
nputs, it becomes evident that irrigation plays a crucial role in driving
he decline of extreme temperature effects. Therefore, the next step in
nderstanding the reduction in temperature sensitivity involves calcu-
ating the degree to which irrigation has expanded across the country
nd quantifying its contribution to the decline in temperature sensitiv-
ty. As Figure A.7 in Appendix A.1 demonstrates significant variations
n the extent of irrigation expansion, the role of irrigation in moderating
ield sensitivity to extreme high temperatures is contingent upon the
xtent of irrigation coverage growth. Consequently, our investigation
ocuses on the heterogeneous evolution of temperature sensitivity in
elation to the extent of irrigation expansion.

We estimate a triple-interaction panel model in Equation (C.2) of
ppendix C.2 which allows period-specific temperature effects to vary
cross categories indicating the extent to which irrigation expanded.
he 25th, 50th, and 75th percentile of the difference in irrigation cover-
ge between pre-1996 period and post-1996 period are −0.022, 0.029,
nd 0.095, respectively, whereby we can classify the whole sample
nto four categories with different extent of irrigation change over time
eriods.21 Figure C.1 reports the results for the heterogeneous irrigation
ffects. Notably, our findings show that a decrease in temperature
ensitivity is primarily observed in counties with irrigation expansion,
mplying that irrigation plays a significant role in mitigating the impact
f extreme temperatures on crops.

Next, we proceed to assess the contribution of irrigation expansion
o the overall adaptation effects, specifically the proportion of the
ecline in temperature sensitivity that can be attributed to irrigation
xpansion. As indicated in Table 3, increasing irrigation coverage from
% to 100% is associated with a substantial 25–28 percentage-point
eduction in extreme temperature effects on corn yields. For counties
xperiencing irrigation expansion (i.e., above the median in irrigation
overage growth), the average change in irrigation coverage is 0.14.
onsequently, this leads to a reduction of heat-related yield losses by
.50–3.92 percentage points (ranging from 0.25 × 0.14 to 0.28 × 0.14),
ccounting for 29% to 34% of the overall adaptation effect, which
orresponds to an 11.47 percentage-point decline in yield losses due
o high temperatures. Similarly, in soybean-growing counties with irri-
ation expansion, the irrigation coverage increased by 13.3 percentage
oints between the pre-1996 and post-1996 periods, explaining about
5% to 27% of the 7 percentage-point decline in soybean yield loss.

19 Our new data source–the Statistical Yearbook of Chinese Cities(1984 to
010) allows us to control for prefecture-level GDP and tons of cargo that
s transported by road as a proxy for local infrastructure development, both
f which are positively correlated with input utilization. But the Statistical
earbook of Chinese Cities only provides data in the prefecture level which
onsists of several counties. It is reasonably to assume that counties in a
ore prosperous prefecture are highly likely to have a higher level of GDP

han otherwise. County-level data sources such as the Public Finance Statistical
aterials of Prefectures, Cities and Counties and the Social and Economic Yearbook
f Counties and Cities can only provide county-level GDP since mid-1990s and
ack of proxy variables for infrastructure development.
20 Table C.5 presents the results of the same type of robustness analysis

or the interaction effects between inputs and low temperature variables in
ppendix C.1.
21 We classify all the counties into four categories based on the distribution
f irrigation variation: strictly below the 25th percentile, above the 25th
ercentile but strictly below the median, above the median but strictly below
he 75th percentile, and above the 75th percentile. More details are referred
o Appendix C.2.
14
6.3. Identifying the adaptation effect of irrigation using exogenous varia-
tions

Although variations in inputs over time have exogenous character-
istics and the estimation is robust to specifications with confounding
factors, the evidence on adaptation effects of inputs is only suggestive
rather than causal. We present a causal framework that leverages
quasi-experimental variations in irrigation to investigate whether the
expansion of irrigation coverage through an irrigation project miti-
gates the effects of extreme high temperatures on crop yields. We
first investigate the treatment effect of irrigation project on irrigation
coverage using temporal and spatial variation of the treatment. This
approach aims to demonstrate the quasi-experimental nature of the
irrigation variation within the project. We then estimate a two-way
fixed effect model that incorporates an interaction between extreme
high temperatures and the project implementation designated by the
project. This analysis aims to explore the extent to which the irrigation
project mitigates the effects of high temperatures.

6.3.1. Quasi-experimental variation in irrigation coverage
We employ a DID model to validate the quasi-experimental na-

ture of the variation in irrigation coverage. In order to demonstrate
the validity of the difference-in-differences (DID) approach concerning
parallel pre-treatment trends, we perform an event study analyzing
the irrigation project’s impact on irrigation coverage over time. The
results are shown in Fig. 5. Panels (a) and (b) show the trends of
project treatment effects on irrigation coverage for counties that have
planted corn and soybeans intensively (counties that never planted corn
or soybean are excluded from the sample). None of the pre-treatment
indicators show any statistical significance suggesting that the treated
and control counties have similar time trends at least 10 years before
implementation of the project. Meanwhile, the coefficients become
significant and increase gradually after 1996. The event study verifies
that the irrigation project has caused substantial variations in irrigation
across places over time.

Table 4 reports the average treatment effect of the irrigation project
on irrigation coverage over years using the difference-in-differences
approach. Columns 1 and 3 report the results for specifications control-
ling for county-specific fixed effects and province-year fixed effects. For
both corn and soybean counties, irrigation coverage has significantly
increased by about 16 percentage points. Columns 2 and 4 show
the results for specifications adding county-specific time trends which
absorb unobserved factors that lead to smooth change in irrigation.
Although the treatment effect decreases due to the county-specific time
trends, the irrigation coverage has significantly increased by about
7 percentage points. The average treatment effect is significant over
specifications implying that the relationship between the irrigation
project and irrigation access is strong.

Irrigation may be substituted by other inputs in counties in absence
of irrigation expansion. We check whether inputs other than irrigation
are more responsive to high temperatures in counties with irrigation
expansion to a lower extent. We classify counties in terms of irrigation
expansion. First, we estimate the heterogeneous responsiveness of in-
puts other than irrigation to high temperatures by the treatment status
for corn and soybean counties. The results are reported in Table C.6
of Appendix C.3, which shows that there is no significant difference
in the responsiveness of inputs to high temperature shocks between
counties that are treated by the irrigation project and those that are
not. Second, we estimate the heterogeneous responsiveness of inputs
other than irrigation to high temperatures by the extent of irrigation
expansion for corn and soybean counties. The results are reported in
Table C.7 of Appendix C.3, which shows that there is no significant
difference in the responsiveness of inputs to high temperature shocks
between counties with irrigation expansion to a higher extent and those
otherwise.
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Fig. 5. Event study: the treatment effects of the irrigation expansion project over time.
Notes: Data is missing for counties that never planted corn or soybean from 1981 to 2010. Counties that did not plant corn during the period from 1981 to 2010 have been
removed from the sample, leaving a total of 2301 counties that are referred to ‘‘corn sample’’. Similarly, ‘‘soybean sample’’, which follow the same criteria, are composed of 2194
counties. 295 out of the 300 treated counties as the pilots for irrigation expansion can be observed in our data (the rest 5 treated are state-owned farms which cannot be observed
in the agricultural data). Both of the two event studies take into account county fixed effects, province-year fixed effects, and county-specific quadratic trends and employ the
county-level clustering robust standard errors. The point estimates and the corresponding 95% confidence intervals are depicted in the figure.
Table 4
Treatment effect of the national irrigation project on irrigation coverage.

(1) (2) (3) (4)
Irrigation Irrigation Irrigation Irrigation
Coverage Coverage Coverage Coverage

Irrigation Project 0.1662*** 0.0715*** 0.1623*** 0.0787***
(0.0078) (0.0114) (0.0075) (0.0104)

GDD below T −0.0001 0.0005 −0.0061** 0.0005
(0.0033) (0.0030) (0.0030) (0.0025)

GDD above T −0.0002 0.0084 0.0046 −0.0012
(0.0097) (0.0079) (0.0069) (0.0051)

Corn Corn Soybean Soybean

Observations 56,072 56,072 53,684 53,684
R squared 0.9227 0.9431 0.9247 0.9519
County Quadratic Trends No Yes No Yes
T Threshold 28 ◦C 28 ◦C 26 ◦C 26 ◦C
P Threshold 51 cm 51 cm 44 cm 44 cm

Notes: Columns (1) and (2) report the results for corn counties and Columns (3) and (4) do the same for
soybean counties. Each column corresponds to a separate regression varying on specifications of county-
specific quadratic trends. The dependent variables are irrigation coverage (the ratio of effectively irrigated
area over total arable area). Irrigation Project denotes the project implementation indicator which takes the
value of one for treated counties after 1996. Precipitation and additional climate variables including relative
humidity, sunshine duration, wind speed, evaporation, and ground temperatures are controlled for in all
the regressions. The regressor ‘‘Irrigation Project’’ is defined as the product of the project indicator and the
indicator for the year 1996 when the project was implemented. The county fixed effects and province-year
fixed effects are controlled for in all the regressions. The standard errors are clustered at county level and
the regressions are weighted by annual planted area of each crop. * 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01.
In order to identify the interaction effects between the irrigation
project and high temperatures, we require the additional assumption
that the project treatment and the temperature treatment are inde-
pendent of one another, conditional on the controls such that the
irrigation project would not induce use of other temperature-related
adaptation instruments. Because we are relying on random weather
shocks within a county-year, it is not plausible that temperature vari-
ation is related to assignment of the irrigation project treatments. But
we test more directly for independence between the irrigation project
and temperature by regressing project indicator showing whether a
county was treated by the irrigation project in a given year on all the
climate variables and find no significant relationships. The results are
shown in Table C.8 of Appendix C.3. We further test whether previous
climatic normals which may induce investment of stock adaptation can
predict assignment of project treatments. If so, the project treatment
may be correlated with stock adaptation other than irrigation, which
15
may confound the adaptation effect of irrigation. Table C.9 in Appendix
C.3 shows that previous temperature normals are not predictive of the
treatment assignment.

6.3.2. The impact of irrigation expansion project in mitigating high temper-
ature effects

In this part of analysis, we examine how the high temperature
impacts on yields depend on the treatment assigned by the irrigation
project. The findings are presented in Table 5. Columns 1 and 3 reports
the results for specifications that control for county and province-year
fixed effects but for corn sample and soybean sample, respectively. The
analysis reveals that the irrigation project led to about 8-percentage-
point reduction in the temperature sensitivity of yields. The overall
adaptation effect estimated using the same fixed effect specification
which is presented in Column 2 of Table 2 indicates a substantial 20
percentage-point decline in temperature sensitivity for corn. It is note-
worthy that the irrigation expansion caused by the project treatment



Journal of Development Economics 166 (2024) 103196D. Wang et al.
Table 5
The Impact of irrigation expansion project in mitigating high temperature effects.

(1) (2) (3) (4)
Log Yields Log Yields Log Yields Log Yields

Irrigation Project −0.0401 −0.0161 −0.0592 0.0159
(0.0946) (0.0962) (0.1008) (0.1391)

GDD above T −0.1279*** −0.1447*** −0.1097*** −0.1101***
(0.0250) (0.0237) (0.0285) (0.0215)

GDD above T × Irrigation Project 0.0790*** 0.0452* 0.0779*** 0.0472*
(0.0289) (0.0235) (0.0264) (0.0286)

Corn Corn Soybean Soybean

Observations 59,269 59,269 51,057 51,057
R squared 0.7948 0.8677 0.7246 0.8195
County Quadratic Trends No Yes No Yes
T Threshold 28 ◦C 28 ◦C 26 ◦C 26 ◦C
P Threshold 51 cm 51 cm 44 cm 44 cm

Notes: Columns (1) and (2) report the results for corn counties and Columns (3) and (4) do the same for soybean
counties. Each column corresponds to a separate regression varying on specifications of county-specific quadratic trends.
For all the regressions, the dependent variables are log crop yields for all the regressions. Irrigation Project denotes the
project implementation indicator which takes the value of one for treated counties after 1996. Precipitation, interactions of
precipitations with the project indicator, and additional climate variables including relative humidity, sunshine duration, wind
speed, evaporation, and ground temperatures are controlled for. All the regressions take into account county fixed effects and
province-year fixed effects. The standard errors are clustered at county level and the regressions are weighted by annual
planted area of each crop. * 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01.
accounted for approximately 38.6% (0.079/(0.2879 - 0.0834)) of the
overall adaptation effect observed in the corn sector.

Another model specification used for estimating the irrigation
project effect in moderating temperature sensitivity involves adding
county-specific year trends to the specifications in Columns 1 and 3.
This addition helps to control for county-specific factors that lead to
smooth changes in crop yields. The results, shown in Columns 2 and
4, reveal that the impact of extreme high temperatures on yields is
reduced by 4.5 percentage points due to the irrigation project. Addi-
tionally, the overall adaptation effect indicates an 11-percentage-point
decline in high temperature impacts on corn yields, as demonstrated in
Column 3 of Table 2. Consequently, the irrigation project contributed
to 40.0% (0.0459/(0.2295 - 0.1147)) of the overall adaptation effect.
Similar results are observed for soybean.

Notably, the difference-in-differences (DID) estimation indicates a
larger contribution of irrigation to the overall adaptation effect com-
pared to ordinary least squares (OLS) estimation. This discrepancy may
be due to the fact that investment in irrigation could potentially redirect
funding away from other adaptive measures when the budget is fixed,
thereby influencing the overall adaptation effect. However, the Chinese
government’s provision of extra financial aid for irrigation construction
during the implementation of the irrigation project ensured that invest-
ments in irrigation did not compromise investments in other adaptive
instruments.

Irrigation is also an important adaptive instrument for other crops.
We investigate how the high temperature effects on yields of wheat,
rice and the overall grain category depend on changes in irrigation
coverage. We employ two specifications for measuring irrigation’s im-
pact. In the first approach, we interact irrigation coverage with all
temperature and precipitation variables. To address endogeneity con-
cerns regarding irrigation coverage, we substitute it with the irrigation
project indicator in the first specification. The results for the two speci-
fications are reported in Panel A and Panel B of Table C.10 in Appendix
C.4, respectively and demonstrate consistency. We find that an increase
in irrigation coverage is associated with a significant reduction in yield
losses due to high temperature exposure, except for multiple-season
rice, which benefits from being grown in paddy fields that can mitigate
the effects of high temperature shocks, much like irrigation does.

However, there exists a caveat concerning the enduring effective-
ness of irrigation in mitigating heat-related yield losses. Hornbeck and
Keskin (2014) posit that irrigation might constitute a mal-adaptation.
Their study reveals that the access to groundwater has led to an
increase in agricultural land values. In the initial two decades (1950
16
to 1974) of utilizing groundwater from the Ogallala aquifer, the culti-
vation area for irrigated crops (which are water-intensive) substantially
expanded, resulting in a diminished impact of drought. As land utiliza-
tion gradually shifted towards water-intensive crops, the vulnerability
to drought amplified during the period from 1976 to 1993. Our study,
constrained by data limitations, prevents us from delving as extensively
into the adaptive benefits of irrigation as Hornbeck and Keskin (2014)
have done. Furthermore, the long-term adaptation effect of irrigation
could potentially be compromised if climate change results in water
shortages or if farmers respond to the expansion of irrigation by plant-
ing more water-intensive and lucrative crops. Therefore, the long-term
adaptation effect of irrigation remains a subject for future research.

7. Conclusion

The goal of this paper is to understand how specific adaptation
measures mitigate agricultural impacts of exposure to high tempera-
tures and how implementation of these specific measures contributes
to the overall adaptation effect. To achieve this, we leverage quasi-
experimental variations in irrigation induced by a natural experiment
for irrigation expansion started in 1996 and quantify the contribution
of irrigation access to the overall adaptation effect. There are three
primary findings. First, using a period-specific panel fixed effect model,
the analysis shows a significant decline in the temperature-related
yield loss in the post-1996 period compared to before, indicating an
overall adaptation effect. Second, estimation of marginal adaptation
effects of inputs points to irrigation as the central input for adaptation
among the inputs observed in the data. Third, using the difference-
in-differences approach, we show that the presence of the irrigation
expansion experiment significantly mitigated the high temperature im-
pacts on crop yields, with increased irrigation through the natural
experiment accounting for about 40% of the overall adaptation effect.
Our results indicate that improving irrigation access may be a useful
instrument for mitigating yield loss from a warming climate.

Our findings carry significant implications for forecasting the effects
of climate change and formulating policies for investment in adapta-
tion. First, the temporal progression of temperature effects suggests
that estimates concerning temperature impacts in previous periods may
inaccurately portray future effects. If extreme temperature effects on
agricultural outcomes declined over time, estimates of temperature sen-
sitivity in the earlier periods may overestimate climate-change impacts
in the future. Second, there exist significant prospects for mitigating

the adverse effects of climate change on agriculture by harnessing



Journal of Development Economics 166 (2024) 103196D. Wang et al.
established technologies. Moreover, there are substantial opportunities
to apply existing technologies across various sectors to minimize the
impacts of climate change, necessitating urgent research efforts. Also
of great importance is the exploration of novel technologies that hold
value in an altered climate. Embracing both forms of adaptation shows
immense potential, but it is essential to acknowledge that they demand
resources that might otherwise be allocated to different priorities and
their long-term effectiveness needs investigation.

Data availability

The authors do not have permission to share data.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jdeveco.2023.103196.
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